| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							qusmul2idl.h | 
							⊢ 𝑄  =  ( 𝑅  /s  ( 𝑅  ~QG  𝐼 ) )  | 
						
						
							| 2 | 
							
								
							 | 
							qusmul2idl.v | 
							⊢ 𝐵  =  ( Base ‘ 𝑅 )  | 
						
						
							| 3 | 
							
								
							 | 
							qusmul2idl.p | 
							⊢  ·   =  ( .r ‘ 𝑅 )  | 
						
						
							| 4 | 
							
								
							 | 
							qusmul2idl.a | 
							⊢  ×   =  ( .r ‘ 𝑄 )  | 
						
						
							| 5 | 
							
								
							 | 
							qusmul2idl.1 | 
							⊢ ( 𝜑  →  𝑅  ∈  Ring )  | 
						
						
							| 6 | 
							
								
							 | 
							qusmul2idl.2 | 
							⊢ ( 𝜑  →  𝐼  ∈  ( 2Ideal ‘ 𝑅 ) )  | 
						
						
							| 7 | 
							
								
							 | 
							qusmul2idl.3 | 
							⊢ ( 𝜑  →  𝑋  ∈  𝐵 )  | 
						
						
							| 8 | 
							
								
							 | 
							qusmul2idl.4 | 
							⊢ ( 𝜑  →  𝑌  ∈  𝐵 )  | 
						
						
							| 9 | 
							
								1
							 | 
							a1i | 
							⊢ ( 𝜑  →  𝑄  =  ( 𝑅  /s  ( 𝑅  ~QG  𝐼 ) ) )  | 
						
						
							| 10 | 
							
								2
							 | 
							a1i | 
							⊢ ( 𝜑  →  𝐵  =  ( Base ‘ 𝑅 ) )  | 
						
						
							| 11 | 
							
								6
							 | 
							2idllidld | 
							⊢ ( 𝜑  →  𝐼  ∈  ( LIdeal ‘ 𝑅 ) )  | 
						
						
							| 12 | 
							
								
							 | 
							eqid | 
							⊢ ( LIdeal ‘ 𝑅 )  =  ( LIdeal ‘ 𝑅 )  | 
						
						
							| 13 | 
							
								12
							 | 
							lidlsubg | 
							⊢ ( ( 𝑅  ∈  Ring  ∧  𝐼  ∈  ( LIdeal ‘ 𝑅 ) )  →  𝐼  ∈  ( SubGrp ‘ 𝑅 ) )  | 
						
						
							| 14 | 
							
								5 11 13
							 | 
							syl2anc | 
							⊢ ( 𝜑  →  𝐼  ∈  ( SubGrp ‘ 𝑅 ) )  | 
						
						
							| 15 | 
							
								
							 | 
							eqid | 
							⊢ ( 𝑅  ~QG  𝐼 )  =  ( 𝑅  ~QG  𝐼 )  | 
						
						
							| 16 | 
							
								2 15
							 | 
							eqger | 
							⊢ ( 𝐼  ∈  ( SubGrp ‘ 𝑅 )  →  ( 𝑅  ~QG  𝐼 )  Er  𝐵 )  | 
						
						
							| 17 | 
							
								14 16
							 | 
							syl | 
							⊢ ( 𝜑  →  ( 𝑅  ~QG  𝐼 )  Er  𝐵 )  | 
						
						
							| 18 | 
							
								
							 | 
							eqid | 
							⊢ ( 2Ideal ‘ 𝑅 )  =  ( 2Ideal ‘ 𝑅 )  | 
						
						
							| 19 | 
							
								2 15 18 3
							 | 
							2idlcpbl | 
							⊢ ( ( 𝑅  ∈  Ring  ∧  𝐼  ∈  ( 2Ideal ‘ 𝑅 ) )  →  ( ( 𝑥 ( 𝑅  ~QG  𝐼 ) 𝑦  ∧  𝑧 ( 𝑅  ~QG  𝐼 ) 𝑡 )  →  ( 𝑥  ·  𝑧 ) ( 𝑅  ~QG  𝐼 ) ( 𝑦  ·  𝑡 ) ) )  | 
						
						
							| 20 | 
							
								5 6 19
							 | 
							syl2anc | 
							⊢ ( 𝜑  →  ( ( 𝑥 ( 𝑅  ~QG  𝐼 ) 𝑦  ∧  𝑧 ( 𝑅  ~QG  𝐼 ) 𝑡 )  →  ( 𝑥  ·  𝑧 ) ( 𝑅  ~QG  𝐼 ) ( 𝑦  ·  𝑡 ) ) )  | 
						
						
							| 21 | 
							
								2 3
							 | 
							ringcl | 
							⊢ ( ( 𝑅  ∈  Ring  ∧  𝑝  ∈  𝐵  ∧  𝑞  ∈  𝐵 )  →  ( 𝑝  ·  𝑞 )  ∈  𝐵 )  | 
						
						
							| 22 | 
							
								21
							 | 
							3expb | 
							⊢ ( ( 𝑅  ∈  Ring  ∧  ( 𝑝  ∈  𝐵  ∧  𝑞  ∈  𝐵 ) )  →  ( 𝑝  ·  𝑞 )  ∈  𝐵 )  | 
						
						
							| 23 | 
							
								5 22
							 | 
							sylan | 
							⊢ ( ( 𝜑  ∧  ( 𝑝  ∈  𝐵  ∧  𝑞  ∈  𝐵 ) )  →  ( 𝑝  ·  𝑞 )  ∈  𝐵 )  | 
						
						
							| 24 | 
							
								23
							 | 
							caovclg | 
							⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  𝐵  ∧  𝑡  ∈  𝐵 ) )  →  ( 𝑦  ·  𝑡 )  ∈  𝐵 )  | 
						
						
							| 25 | 
							
								9 10 17 5 20 24 3 4
							 | 
							qusmulval | 
							⊢ ( ( 𝜑  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( [ 𝑋 ] ( 𝑅  ~QG  𝐼 )  ×  [ 𝑌 ] ( 𝑅  ~QG  𝐼 ) )  =  [ ( 𝑋  ·  𝑌 ) ] ( 𝑅  ~QG  𝐼 ) )  | 
						
						
							| 26 | 
							
								7 8 25
							 | 
							mpd3an23 | 
							⊢ ( 𝜑  →  ( [ 𝑋 ] ( 𝑅  ~QG  𝐼 )  ×  [ 𝑌 ] ( 𝑅  ~QG  𝐼 ) )  =  [ ( 𝑋  ·  𝑌 ) ] ( 𝑅  ~QG  𝐼 ) )  |