Step |
Hyp |
Ref |
Expression |
1 |
|
qusmulcrng.h |
⊢ 𝑄 = ( 𝑅 /s ( 𝑅 ~QG 𝐼 ) ) |
2 |
|
qusmulcrng.v |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
3 |
|
qusmulcrng.p |
⊢ · = ( .r ‘ 𝑅 ) |
4 |
|
qusmulcrng.a |
⊢ × = ( .r ‘ 𝑄 ) |
5 |
|
qusmulcrng.r |
⊢ ( 𝜑 → 𝑅 ∈ CRing ) |
6 |
|
qusmulcrng.i |
⊢ ( 𝜑 → 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ) |
7 |
|
qusmulcrng.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
8 |
|
qusmulcrng.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
9 |
5
|
crngringd |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
10 |
|
eqid |
⊢ ( LIdeal ‘ 𝑅 ) = ( LIdeal ‘ 𝑅 ) |
11 |
10
|
crng2idl |
⊢ ( 𝑅 ∈ CRing → ( LIdeal ‘ 𝑅 ) = ( 2Ideal ‘ 𝑅 ) ) |
12 |
5 11
|
syl |
⊢ ( 𝜑 → ( LIdeal ‘ 𝑅 ) = ( 2Ideal ‘ 𝑅 ) ) |
13 |
6 12
|
eleqtrd |
⊢ ( 𝜑 → 𝐼 ∈ ( 2Ideal ‘ 𝑅 ) ) |
14 |
1 2 3 4 9 13 7 8
|
qusmul2idl |
⊢ ( 𝜑 → ( [ 𝑋 ] ( 𝑅 ~QG 𝐼 ) × [ 𝑌 ] ( 𝑅 ~QG 𝐼 ) ) = [ ( 𝑋 · 𝑌 ) ] ( 𝑅 ~QG 𝐼 ) ) |