Metamath Proof Explorer


Theorem qusmulcrng

Description: Value of the ring operation in a quotient ring of a commutative ring. (Contributed by Thierry Arnoux, 1-Sep-2024) (Proof shortened by metakunt, 3-Jun-2025)

Ref Expression
Hypotheses qusmulcrng.h 𝑄 = ( 𝑅 /s ( 𝑅 ~QG 𝐼 ) )
qusmulcrng.v 𝐵 = ( Base ‘ 𝑅 )
qusmulcrng.p · = ( .r𝑅 )
qusmulcrng.a × = ( .r𝑄 )
qusmulcrng.r ( 𝜑𝑅 ∈ CRing )
qusmulcrng.i ( 𝜑𝐼 ∈ ( LIdeal ‘ 𝑅 ) )
qusmulcrng.x ( 𝜑𝑋𝐵 )
qusmulcrng.y ( 𝜑𝑌𝐵 )
Assertion qusmulcrng ( 𝜑 → ( [ 𝑋 ] ( 𝑅 ~QG 𝐼 ) × [ 𝑌 ] ( 𝑅 ~QG 𝐼 ) ) = [ ( 𝑋 · 𝑌 ) ] ( 𝑅 ~QG 𝐼 ) )

Proof

Step Hyp Ref Expression
1 qusmulcrng.h 𝑄 = ( 𝑅 /s ( 𝑅 ~QG 𝐼 ) )
2 qusmulcrng.v 𝐵 = ( Base ‘ 𝑅 )
3 qusmulcrng.p · = ( .r𝑅 )
4 qusmulcrng.a × = ( .r𝑄 )
5 qusmulcrng.r ( 𝜑𝑅 ∈ CRing )
6 qusmulcrng.i ( 𝜑𝐼 ∈ ( LIdeal ‘ 𝑅 ) )
7 qusmulcrng.x ( 𝜑𝑋𝐵 )
8 qusmulcrng.y ( 𝜑𝑌𝐵 )
9 5 crngringd ( 𝜑𝑅 ∈ Ring )
10 eqid ( LIdeal ‘ 𝑅 ) = ( LIdeal ‘ 𝑅 )
11 10 crng2idl ( 𝑅 ∈ CRing → ( LIdeal ‘ 𝑅 ) = ( 2Ideal ‘ 𝑅 ) )
12 5 11 syl ( 𝜑 → ( LIdeal ‘ 𝑅 ) = ( 2Ideal ‘ 𝑅 ) )
13 6 12 eleqtrd ( 𝜑𝐼 ∈ ( 2Ideal ‘ 𝑅 ) )
14 1 2 3 4 9 13 7 8 qusmul2idl ( 𝜑 → ( [ 𝑋 ] ( 𝑅 ~QG 𝐼 ) × [ 𝑌 ] ( 𝑅 ~QG 𝐼 ) ) = [ ( 𝑋 · 𝑌 ) ] ( 𝑅 ~QG 𝐼 ) )