| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							qusmulcrng.h | 
							⊢ 𝑄  =  ( 𝑅  /s  ( 𝑅  ~QG  𝐼 ) )  | 
						
						
							| 2 | 
							
								
							 | 
							qusmulcrng.v | 
							⊢ 𝐵  =  ( Base ‘ 𝑅 )  | 
						
						
							| 3 | 
							
								
							 | 
							qusmulcrng.p | 
							⊢  ·   =  ( .r ‘ 𝑅 )  | 
						
						
							| 4 | 
							
								
							 | 
							qusmulcrng.a | 
							⊢  ×   =  ( .r ‘ 𝑄 )  | 
						
						
							| 5 | 
							
								
							 | 
							qusmulcrng.r | 
							⊢ ( 𝜑  →  𝑅  ∈  CRing )  | 
						
						
							| 6 | 
							
								
							 | 
							qusmulcrng.i | 
							⊢ ( 𝜑  →  𝐼  ∈  ( LIdeal ‘ 𝑅 ) )  | 
						
						
							| 7 | 
							
								
							 | 
							qusmulcrng.x | 
							⊢ ( 𝜑  →  𝑋  ∈  𝐵 )  | 
						
						
							| 8 | 
							
								
							 | 
							qusmulcrng.y | 
							⊢ ( 𝜑  →  𝑌  ∈  𝐵 )  | 
						
						
							| 9 | 
							
								5
							 | 
							crngringd | 
							⊢ ( 𝜑  →  𝑅  ∈  Ring )  | 
						
						
							| 10 | 
							
								
							 | 
							eqid | 
							⊢ ( LIdeal ‘ 𝑅 )  =  ( LIdeal ‘ 𝑅 )  | 
						
						
							| 11 | 
							
								10
							 | 
							crng2idl | 
							⊢ ( 𝑅  ∈  CRing  →  ( LIdeal ‘ 𝑅 )  =  ( 2Ideal ‘ 𝑅 ) )  | 
						
						
							| 12 | 
							
								5 11
							 | 
							syl | 
							⊢ ( 𝜑  →  ( LIdeal ‘ 𝑅 )  =  ( 2Ideal ‘ 𝑅 ) )  | 
						
						
							| 13 | 
							
								6 12
							 | 
							eleqtrd | 
							⊢ ( 𝜑  →  𝐼  ∈  ( 2Ideal ‘ 𝑅 ) )  | 
						
						
							| 14 | 
							
								1 2 3 4 9 13 7 8
							 | 
							qusmul2idl | 
							⊢ ( 𝜑  →  ( [ 𝑋 ] ( 𝑅  ~QG  𝐼 )  ×  [ 𝑌 ] ( 𝑅  ~QG  𝐼 ) )  =  [ ( 𝑋  ·  𝑌 ) ] ( 𝑅  ~QG  𝐼 ) )  |