Step |
Hyp |
Ref |
Expression |
1 |
|
qusmulrng.e |
⊢ ∼ = ( 𝑅 ~QG 𝑆 ) |
2 |
|
qusmulrng.h |
⊢ 𝐻 = ( 𝑅 /s ∼ ) |
3 |
|
qusmulrng.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
4 |
|
qusmulrng.p |
⊢ · = ( .r ‘ 𝑅 ) |
5 |
|
qusmulrng.a |
⊢ ∙ = ( .r ‘ 𝐻 ) |
6 |
2
|
a1i |
⊢ ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ ( 2Ideal ‘ 𝑅 ) ∧ 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ) → 𝐻 = ( 𝑅 /s ∼ ) ) |
7 |
3
|
a1i |
⊢ ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ ( 2Ideal ‘ 𝑅 ) ∧ 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ) → 𝐵 = ( Base ‘ 𝑅 ) ) |
8 |
3 1
|
eqger |
⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝑅 ) → ∼ Er 𝐵 ) |
9 |
8
|
3ad2ant3 |
⊢ ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ ( 2Ideal ‘ 𝑅 ) ∧ 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ) → ∼ Er 𝐵 ) |
10 |
|
simp1 |
⊢ ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ ( 2Ideal ‘ 𝑅 ) ∧ 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ) → 𝑅 ∈ Rng ) |
11 |
|
eqid |
⊢ ( 2Ideal ‘ 𝑅 ) = ( 2Ideal ‘ 𝑅 ) |
12 |
3 1 11 4
|
2idlcpblrng |
⊢ ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ ( 2Ideal ‘ 𝑅 ) ∧ 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ) → ( ( 𝑎 ∼ 𝑏 ∧ 𝑐 ∼ 𝑑 ) → ( 𝑎 · 𝑐 ) ∼ ( 𝑏 · 𝑑 ) ) ) |
13 |
10
|
anim1i |
⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ ( 2Ideal ‘ 𝑅 ) ∧ 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑑 ∈ 𝐵 ) ) → ( 𝑅 ∈ Rng ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑑 ∈ 𝐵 ) ) ) |
14 |
|
3anass |
⊢ ( ( 𝑅 ∈ Rng ∧ 𝑏 ∈ 𝐵 ∧ 𝑑 ∈ 𝐵 ) ↔ ( 𝑅 ∈ Rng ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑑 ∈ 𝐵 ) ) ) |
15 |
13 14
|
sylibr |
⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ ( 2Ideal ‘ 𝑅 ) ∧ 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑑 ∈ 𝐵 ) ) → ( 𝑅 ∈ Rng ∧ 𝑏 ∈ 𝐵 ∧ 𝑑 ∈ 𝐵 ) ) |
16 |
3 4
|
rngcl |
⊢ ( ( 𝑅 ∈ Rng ∧ 𝑏 ∈ 𝐵 ∧ 𝑑 ∈ 𝐵 ) → ( 𝑏 · 𝑑 ) ∈ 𝐵 ) |
17 |
15 16
|
syl |
⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ ( 2Ideal ‘ 𝑅 ) ∧ 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑑 ∈ 𝐵 ) ) → ( 𝑏 · 𝑑 ) ∈ 𝐵 ) |
18 |
6 7 9 10 12 17 4 5
|
qusmulval |
⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ ( 2Ideal ‘ 𝑅 ) ∧ 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( [ 𝑋 ] ∼ ∙ [ 𝑌 ] ∼ ) = [ ( 𝑋 · 𝑌 ) ] ∼ ) |
19 |
18
|
3expb |
⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ ( 2Ideal ‘ 𝑅 ) ∧ 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( [ 𝑋 ] ∼ ∙ [ 𝑌 ] ∼ ) = [ ( 𝑋 · 𝑌 ) ] ∼ ) |