| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							qusmulrng.e | 
							⊢  ∼   =  ( 𝑅  ~QG  𝑆 )  | 
						
						
							| 2 | 
							
								
							 | 
							qusmulrng.h | 
							⊢ 𝐻  =  ( 𝑅  /s   ∼  )  | 
						
						
							| 3 | 
							
								
							 | 
							qusmulrng.b | 
							⊢ 𝐵  =  ( Base ‘ 𝑅 )  | 
						
						
							| 4 | 
							
								
							 | 
							qusmulrng.p | 
							⊢  ·   =  ( .r ‘ 𝑅 )  | 
						
						
							| 5 | 
							
								
							 | 
							qusmulrng.a | 
							⊢  ∙   =  ( .r ‘ 𝐻 )  | 
						
						
							| 6 | 
							
								2
							 | 
							a1i | 
							⊢ ( ( 𝑅  ∈  Rng  ∧  𝑆  ∈  ( 2Ideal ‘ 𝑅 )  ∧  𝑆  ∈  ( SubGrp ‘ 𝑅 ) )  →  𝐻  =  ( 𝑅  /s   ∼  ) )  | 
						
						
							| 7 | 
							
								3
							 | 
							a1i | 
							⊢ ( ( 𝑅  ∈  Rng  ∧  𝑆  ∈  ( 2Ideal ‘ 𝑅 )  ∧  𝑆  ∈  ( SubGrp ‘ 𝑅 ) )  →  𝐵  =  ( Base ‘ 𝑅 ) )  | 
						
						
							| 8 | 
							
								3 1
							 | 
							eqger | 
							⊢ ( 𝑆  ∈  ( SubGrp ‘ 𝑅 )  →   ∼   Er  𝐵 )  | 
						
						
							| 9 | 
							
								8
							 | 
							3ad2ant3 | 
							⊢ ( ( 𝑅  ∈  Rng  ∧  𝑆  ∈  ( 2Ideal ‘ 𝑅 )  ∧  𝑆  ∈  ( SubGrp ‘ 𝑅 ) )  →   ∼   Er  𝐵 )  | 
						
						
							| 10 | 
							
								
							 | 
							simp1 | 
							⊢ ( ( 𝑅  ∈  Rng  ∧  𝑆  ∈  ( 2Ideal ‘ 𝑅 )  ∧  𝑆  ∈  ( SubGrp ‘ 𝑅 ) )  →  𝑅  ∈  Rng )  | 
						
						
							| 11 | 
							
								
							 | 
							eqid | 
							⊢ ( 2Ideal ‘ 𝑅 )  =  ( 2Ideal ‘ 𝑅 )  | 
						
						
							| 12 | 
							
								3 1 11 4
							 | 
							2idlcpblrng | 
							⊢ ( ( 𝑅  ∈  Rng  ∧  𝑆  ∈  ( 2Ideal ‘ 𝑅 )  ∧  𝑆  ∈  ( SubGrp ‘ 𝑅 ) )  →  ( ( 𝑎  ∼  𝑏  ∧  𝑐  ∼  𝑑 )  →  ( 𝑎  ·  𝑐 )  ∼  ( 𝑏  ·  𝑑 ) ) )  | 
						
						
							| 13 | 
							
								10
							 | 
							anim1i | 
							⊢ ( ( ( 𝑅  ∈  Rng  ∧  𝑆  ∈  ( 2Ideal ‘ 𝑅 )  ∧  𝑆  ∈  ( SubGrp ‘ 𝑅 ) )  ∧  ( 𝑏  ∈  𝐵  ∧  𝑑  ∈  𝐵 ) )  →  ( 𝑅  ∈  Rng  ∧  ( 𝑏  ∈  𝐵  ∧  𝑑  ∈  𝐵 ) ) )  | 
						
						
							| 14 | 
							
								
							 | 
							3anass | 
							⊢ ( ( 𝑅  ∈  Rng  ∧  𝑏  ∈  𝐵  ∧  𝑑  ∈  𝐵 )  ↔  ( 𝑅  ∈  Rng  ∧  ( 𝑏  ∈  𝐵  ∧  𝑑  ∈  𝐵 ) ) )  | 
						
						
							| 15 | 
							
								13 14
							 | 
							sylibr | 
							⊢ ( ( ( 𝑅  ∈  Rng  ∧  𝑆  ∈  ( 2Ideal ‘ 𝑅 )  ∧  𝑆  ∈  ( SubGrp ‘ 𝑅 ) )  ∧  ( 𝑏  ∈  𝐵  ∧  𝑑  ∈  𝐵 ) )  →  ( 𝑅  ∈  Rng  ∧  𝑏  ∈  𝐵  ∧  𝑑  ∈  𝐵 ) )  | 
						
						
							| 16 | 
							
								3 4
							 | 
							rngcl | 
							⊢ ( ( 𝑅  ∈  Rng  ∧  𝑏  ∈  𝐵  ∧  𝑑  ∈  𝐵 )  →  ( 𝑏  ·  𝑑 )  ∈  𝐵 )  | 
						
						
							| 17 | 
							
								15 16
							 | 
							syl | 
							⊢ ( ( ( 𝑅  ∈  Rng  ∧  𝑆  ∈  ( 2Ideal ‘ 𝑅 )  ∧  𝑆  ∈  ( SubGrp ‘ 𝑅 ) )  ∧  ( 𝑏  ∈  𝐵  ∧  𝑑  ∈  𝐵 ) )  →  ( 𝑏  ·  𝑑 )  ∈  𝐵 )  | 
						
						
							| 18 | 
							
								6 7 9 10 12 17 4 5
							 | 
							qusmulval | 
							⊢ ( ( ( 𝑅  ∈  Rng  ∧  𝑆  ∈  ( 2Ideal ‘ 𝑅 )  ∧  𝑆  ∈  ( SubGrp ‘ 𝑅 ) )  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( [ 𝑋 ]  ∼   ∙  [ 𝑌 ]  ∼  )  =  [ ( 𝑋  ·  𝑌 ) ]  ∼  )  | 
						
						
							| 19 | 
							
								18
							 | 
							3expb | 
							⊢ ( ( ( 𝑅  ∈  Rng  ∧  𝑆  ∈  ( 2Ideal ‘ 𝑅 )  ∧  𝑆  ∈  ( SubGrp ‘ 𝑅 ) )  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  →  ( [ 𝑋 ]  ∼   ∙  [ 𝑌 ]  ∼  )  =  [ ( 𝑋  ·  𝑌 ) ]  ∼  )  |