Metamath Proof Explorer


Theorem qusmulrng

Description: Value of the multiplication operation in a quotient ring of a non-unital ring. Formerly part of proof for quscrng . Similar to qusmul2 . (Contributed by Mario Carneiro, 15-Jun-2015) (Revised by AV, 28-Feb-2025)

Ref Expression
Hypotheses qusmulrng.e = ( 𝑅 ~QG 𝑆 )
qusmulrng.h 𝐻 = ( 𝑅 /s )
qusmulrng.b 𝐵 = ( Base ‘ 𝑅 )
qusmulrng.p · = ( .r𝑅 )
qusmulrng.a = ( .r𝐻 )
Assertion qusmulrng ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ ( 2Ideal ‘ 𝑅 ) ∧ 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ) ∧ ( 𝑋𝐵𝑌𝐵 ) ) → ( [ 𝑋 ] [ 𝑌 ] ) = [ ( 𝑋 · 𝑌 ) ] )

Proof

Step Hyp Ref Expression
1 qusmulrng.e = ( 𝑅 ~QG 𝑆 )
2 qusmulrng.h 𝐻 = ( 𝑅 /s )
3 qusmulrng.b 𝐵 = ( Base ‘ 𝑅 )
4 qusmulrng.p · = ( .r𝑅 )
5 qusmulrng.a = ( .r𝐻 )
6 2 a1i ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ ( 2Ideal ‘ 𝑅 ) ∧ 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ) → 𝐻 = ( 𝑅 /s ) )
7 3 a1i ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ ( 2Ideal ‘ 𝑅 ) ∧ 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ) → 𝐵 = ( Base ‘ 𝑅 ) )
8 3 1 eqger ( 𝑆 ∈ ( SubGrp ‘ 𝑅 ) → Er 𝐵 )
9 8 3ad2ant3 ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ ( 2Ideal ‘ 𝑅 ) ∧ 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ) → Er 𝐵 )
10 simp1 ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ ( 2Ideal ‘ 𝑅 ) ∧ 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ) → 𝑅 ∈ Rng )
11 eqid ( 2Ideal ‘ 𝑅 ) = ( 2Ideal ‘ 𝑅 )
12 3 1 11 4 2idlcpblrng ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ ( 2Ideal ‘ 𝑅 ) ∧ 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ) → ( ( 𝑎 𝑏𝑐 𝑑 ) → ( 𝑎 · 𝑐 ) ( 𝑏 · 𝑑 ) ) )
13 10 anim1i ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ ( 2Ideal ‘ 𝑅 ) ∧ 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ) ∧ ( 𝑏𝐵𝑑𝐵 ) ) → ( 𝑅 ∈ Rng ∧ ( 𝑏𝐵𝑑𝐵 ) ) )
14 3anass ( ( 𝑅 ∈ Rng ∧ 𝑏𝐵𝑑𝐵 ) ↔ ( 𝑅 ∈ Rng ∧ ( 𝑏𝐵𝑑𝐵 ) ) )
15 13 14 sylibr ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ ( 2Ideal ‘ 𝑅 ) ∧ 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ) ∧ ( 𝑏𝐵𝑑𝐵 ) ) → ( 𝑅 ∈ Rng ∧ 𝑏𝐵𝑑𝐵 ) )
16 3 4 rngcl ( ( 𝑅 ∈ Rng ∧ 𝑏𝐵𝑑𝐵 ) → ( 𝑏 · 𝑑 ) ∈ 𝐵 )
17 15 16 syl ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ ( 2Ideal ‘ 𝑅 ) ∧ 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ) ∧ ( 𝑏𝐵𝑑𝐵 ) ) → ( 𝑏 · 𝑑 ) ∈ 𝐵 )
18 6 7 9 10 12 17 4 5 qusmulval ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ ( 2Ideal ‘ 𝑅 ) ∧ 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ) ∧ 𝑋𝐵𝑌𝐵 ) → ( [ 𝑋 ] [ 𝑌 ] ) = [ ( 𝑋 · 𝑌 ) ] )
19 18 3expb ( ( ( 𝑅 ∈ Rng ∧ 𝑆 ∈ ( 2Ideal ‘ 𝑅 ) ∧ 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ) ∧ ( 𝑋𝐵𝑌𝐵 ) ) → ( [ 𝑋 ] [ 𝑌 ] ) = [ ( 𝑋 · 𝑌 ) ] )