Step |
Hyp |
Ref |
Expression |
1 |
|
qusring.u |
⊢ 𝑈 = ( 𝑅 /s ( 𝑅 ~QG 𝑆 ) ) |
2 |
|
qusring.i |
⊢ 𝐼 = ( 2Ideal ‘ 𝑅 ) |
3 |
|
qusrhm.x |
⊢ 𝑋 = ( Base ‘ 𝑅 ) |
4 |
|
qusrhm.f |
⊢ 𝐹 = ( 𝑥 ∈ 𝑋 ↦ [ 𝑥 ] ( 𝑅 ~QG 𝑆 ) ) |
5 |
|
eqid |
⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) |
6 |
|
eqid |
⊢ ( 1r ‘ 𝑈 ) = ( 1r ‘ 𝑈 ) |
7 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
8 |
|
eqid |
⊢ ( .r ‘ 𝑈 ) = ( .r ‘ 𝑈 ) |
9 |
|
simpl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼 ) → 𝑅 ∈ Ring ) |
10 |
1 2
|
qusring |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼 ) → 𝑈 ∈ Ring ) |
11 |
|
eqid |
⊢ ( LIdeal ‘ 𝑅 ) = ( LIdeal ‘ 𝑅 ) |
12 |
|
eqid |
⊢ ( oppr ‘ 𝑅 ) = ( oppr ‘ 𝑅 ) |
13 |
|
eqid |
⊢ ( LIdeal ‘ ( oppr ‘ 𝑅 ) ) = ( LIdeal ‘ ( oppr ‘ 𝑅 ) ) |
14 |
11 12 13 2
|
2idlval |
⊢ 𝐼 = ( ( LIdeal ‘ 𝑅 ) ∩ ( LIdeal ‘ ( oppr ‘ 𝑅 ) ) ) |
15 |
14
|
elin2 |
⊢ ( 𝑆 ∈ 𝐼 ↔ ( 𝑆 ∈ ( LIdeal ‘ 𝑅 ) ∧ 𝑆 ∈ ( LIdeal ‘ ( oppr ‘ 𝑅 ) ) ) ) |
16 |
15
|
simplbi |
⊢ ( 𝑆 ∈ 𝐼 → 𝑆 ∈ ( LIdeal ‘ 𝑅 ) ) |
17 |
11
|
lidlsubg |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ ( LIdeal ‘ 𝑅 ) ) → 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ) |
18 |
16 17
|
sylan2 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼 ) → 𝑆 ∈ ( SubGrp ‘ 𝑅 ) ) |
19 |
|
eqid |
⊢ ( 𝑅 ~QG 𝑆 ) = ( 𝑅 ~QG 𝑆 ) |
20 |
3 19
|
eqger |
⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝑅 ) → ( 𝑅 ~QG 𝑆 ) Er 𝑋 ) |
21 |
18 20
|
syl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼 ) → ( 𝑅 ~QG 𝑆 ) Er 𝑋 ) |
22 |
3
|
fvexi |
⊢ 𝑋 ∈ V |
23 |
22
|
a1i |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼 ) → 𝑋 ∈ V ) |
24 |
21 23 4
|
divsfval |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼 ) → ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) = [ ( 1r ‘ 𝑅 ) ] ( 𝑅 ~QG 𝑆 ) ) |
25 |
1 2 5
|
qus1 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼 ) → ( 𝑈 ∈ Ring ∧ [ ( 1r ‘ 𝑅 ) ] ( 𝑅 ~QG 𝑆 ) = ( 1r ‘ 𝑈 ) ) ) |
26 |
25
|
simprd |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼 ) → [ ( 1r ‘ 𝑅 ) ] ( 𝑅 ~QG 𝑆 ) = ( 1r ‘ 𝑈 ) ) |
27 |
24 26
|
eqtrd |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼 ) → ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) = ( 1r ‘ 𝑈 ) ) |
28 |
1
|
a1i |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼 ) → 𝑈 = ( 𝑅 /s ( 𝑅 ~QG 𝑆 ) ) ) |
29 |
3
|
a1i |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼 ) → 𝑋 = ( Base ‘ 𝑅 ) ) |
30 |
3 19 2 7
|
2idlcpbl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼 ) → ( ( 𝑎 ( 𝑅 ~QG 𝑆 ) 𝑐 ∧ 𝑏 ( 𝑅 ~QG 𝑆 ) 𝑑 ) → ( 𝑎 ( .r ‘ 𝑅 ) 𝑏 ) ( 𝑅 ~QG 𝑆 ) ( 𝑐 ( .r ‘ 𝑅 ) 𝑑 ) ) ) |
31 |
3 7
|
ringcl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) → ( 𝑦 ( .r ‘ 𝑅 ) 𝑧 ) ∈ 𝑋 ) |
32 |
31
|
3expb |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( 𝑦 ( .r ‘ 𝑅 ) 𝑧 ) ∈ 𝑋 ) |
33 |
32
|
adantlr |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼 ) ∧ ( 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( 𝑦 ( .r ‘ 𝑅 ) 𝑧 ) ∈ 𝑋 ) |
34 |
33
|
caovclg |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼 ) ∧ ( 𝑐 ∈ 𝑋 ∧ 𝑑 ∈ 𝑋 ) ) → ( 𝑐 ( .r ‘ 𝑅 ) 𝑑 ) ∈ 𝑋 ) |
35 |
28 29 21 9 30 34 7 8
|
qusmulval |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼 ) ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) → ( [ 𝑦 ] ( 𝑅 ~QG 𝑆 ) ( .r ‘ 𝑈 ) [ 𝑧 ] ( 𝑅 ~QG 𝑆 ) ) = [ ( 𝑦 ( .r ‘ 𝑅 ) 𝑧 ) ] ( 𝑅 ~QG 𝑆 ) ) |
36 |
35
|
3expb |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼 ) ∧ ( 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( [ 𝑦 ] ( 𝑅 ~QG 𝑆 ) ( .r ‘ 𝑈 ) [ 𝑧 ] ( 𝑅 ~QG 𝑆 ) ) = [ ( 𝑦 ( .r ‘ 𝑅 ) 𝑧 ) ] ( 𝑅 ~QG 𝑆 ) ) |
37 |
21
|
adantr |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼 ) ∧ ( 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( 𝑅 ~QG 𝑆 ) Er 𝑋 ) |
38 |
22
|
a1i |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼 ) ∧ ( 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → 𝑋 ∈ V ) |
39 |
37 38 4
|
divsfval |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼 ) ∧ ( 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( 𝐹 ‘ 𝑦 ) = [ 𝑦 ] ( 𝑅 ~QG 𝑆 ) ) |
40 |
37 38 4
|
divsfval |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼 ) ∧ ( 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( 𝐹 ‘ 𝑧 ) = [ 𝑧 ] ( 𝑅 ~QG 𝑆 ) ) |
41 |
39 40
|
oveq12d |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼 ) ∧ ( 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( ( 𝐹 ‘ 𝑦 ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) ) = ( [ 𝑦 ] ( 𝑅 ~QG 𝑆 ) ( .r ‘ 𝑈 ) [ 𝑧 ] ( 𝑅 ~QG 𝑆 ) ) ) |
42 |
37 38 4
|
divsfval |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼 ) ∧ ( 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( 𝐹 ‘ ( 𝑦 ( .r ‘ 𝑅 ) 𝑧 ) ) = [ ( 𝑦 ( .r ‘ 𝑅 ) 𝑧 ) ] ( 𝑅 ~QG 𝑆 ) ) |
43 |
36 41 42
|
3eqtr4rd |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼 ) ∧ ( 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( 𝐹 ‘ ( 𝑦 ( .r ‘ 𝑅 ) 𝑧 ) ) = ( ( 𝐹 ‘ 𝑦 ) ( .r ‘ 𝑈 ) ( 𝐹 ‘ 𝑧 ) ) ) |
44 |
|
ringabl |
⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ Abel ) |
45 |
44
|
adantr |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼 ) → 𝑅 ∈ Abel ) |
46 |
|
ablnsg |
⊢ ( 𝑅 ∈ Abel → ( NrmSGrp ‘ 𝑅 ) = ( SubGrp ‘ 𝑅 ) ) |
47 |
45 46
|
syl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼 ) → ( NrmSGrp ‘ 𝑅 ) = ( SubGrp ‘ 𝑅 ) ) |
48 |
18 47
|
eleqtrrd |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼 ) → 𝑆 ∈ ( NrmSGrp ‘ 𝑅 ) ) |
49 |
3 1 4
|
qusghm |
⊢ ( 𝑆 ∈ ( NrmSGrp ‘ 𝑅 ) → 𝐹 ∈ ( 𝑅 GrpHom 𝑈 ) ) |
50 |
48 49
|
syl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼 ) → 𝐹 ∈ ( 𝑅 GrpHom 𝑈 ) ) |
51 |
3 5 6 7 8 9 10 27 43 50
|
isrhm2d |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼 ) → 𝐹 ∈ ( 𝑅 RingHom 𝑈 ) ) |