Database
BASIC ALGEBRAIC STRUCTURES
Ideals
Two-sided ideals and quotient rings
qusring
Metamath Proof Explorer
Description: If S is a two-sided ideal in R , then U = R / S is a ring,
called the quotient ring of R by S . (Contributed by Mario
Carneiro , 14-Jun-2015)
Ref
Expression
Hypotheses
qusring.u
⊢ 𝑈 = ( 𝑅 /s ( 𝑅 ~QG 𝑆 ) )
qusring.i
⊢ 𝐼 = ( 2Ideal ‘ 𝑅 )
Assertion
qusring
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼 ) → 𝑈 ∈ Ring )
Proof
Step
Hyp
Ref
Expression
1
qusring.u
⊢ 𝑈 = ( 𝑅 /s ( 𝑅 ~QG 𝑆 ) )
2
qusring.i
⊢ 𝐼 = ( 2Ideal ‘ 𝑅 )
3
eqid
⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 )
4
1 2 3
qus1
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼 ) → ( 𝑈 ∈ Ring ∧ [ ( 1r ‘ 𝑅 ) ] ( 𝑅 ~QG 𝑆 ) = ( 1r ‘ 𝑈 ) ) )
5
4
simpld
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼 ) → 𝑈 ∈ Ring )