Metamath Proof Explorer


Theorem qusring2

Description: The quotient structure of a ring is a ring. (Contributed by Mario Carneiro, 14-Jun-2015)

Ref Expression
Hypotheses qusring2.u ( 𝜑𝑈 = ( 𝑅 /s ) )
qusring2.v ( 𝜑𝑉 = ( Base ‘ 𝑅 ) )
qusring2.p + = ( +g𝑅 )
qusring2.t · = ( .r𝑅 )
qusring2.o 1 = ( 1r𝑅 )
qusring2.r ( 𝜑 Er 𝑉 )
qusring2.e1 ( 𝜑 → ( ( 𝑎 𝑝𝑏 𝑞 ) → ( 𝑎 + 𝑏 ) ( 𝑝 + 𝑞 ) ) )
qusring2.e2 ( 𝜑 → ( ( 𝑎 𝑝𝑏 𝑞 ) → ( 𝑎 · 𝑏 ) ( 𝑝 · 𝑞 ) ) )
qusring2.x ( 𝜑𝑅 ∈ Ring )
Assertion qusring2 ( 𝜑 → ( 𝑈 ∈ Ring ∧ [ 1 ] = ( 1r𝑈 ) ) )

Proof

Step Hyp Ref Expression
1 qusring2.u ( 𝜑𝑈 = ( 𝑅 /s ) )
2 qusring2.v ( 𝜑𝑉 = ( Base ‘ 𝑅 ) )
3 qusring2.p + = ( +g𝑅 )
4 qusring2.t · = ( .r𝑅 )
5 qusring2.o 1 = ( 1r𝑅 )
6 qusring2.r ( 𝜑 Er 𝑉 )
7 qusring2.e1 ( 𝜑 → ( ( 𝑎 𝑝𝑏 𝑞 ) → ( 𝑎 + 𝑏 ) ( 𝑝 + 𝑞 ) ) )
8 qusring2.e2 ( 𝜑 → ( ( 𝑎 𝑝𝑏 𝑞 ) → ( 𝑎 · 𝑏 ) ( 𝑝 · 𝑞 ) ) )
9 qusring2.x ( 𝜑𝑅 ∈ Ring )
10 eqid ( 𝑢𝑉 ↦ [ 𝑢 ] ) = ( 𝑢𝑉 ↦ [ 𝑢 ] )
11 fvex ( Base ‘ 𝑅 ) ∈ V
12 2 11 eqeltrdi ( 𝜑𝑉 ∈ V )
13 erex ( Er 𝑉 → ( 𝑉 ∈ V → ∈ V ) )
14 6 12 13 sylc ( 𝜑 ∈ V )
15 1 2 10 14 9 qusval ( 𝜑𝑈 = ( ( 𝑢𝑉 ↦ [ 𝑢 ] ) “s 𝑅 ) )
16 1 2 10 14 9 quslem ( 𝜑 → ( 𝑢𝑉 ↦ [ 𝑢 ] ) : 𝑉onto→ ( 𝑉 / ) )
17 9 adantr ( ( 𝜑 ∧ ( 𝑥𝑉𝑦𝑉 ) ) → 𝑅 ∈ Ring )
18 simprl ( ( 𝜑 ∧ ( 𝑥𝑉𝑦𝑉 ) ) → 𝑥𝑉 )
19 2 adantr ( ( 𝜑 ∧ ( 𝑥𝑉𝑦𝑉 ) ) → 𝑉 = ( Base ‘ 𝑅 ) )
20 18 19 eleqtrd ( ( 𝜑 ∧ ( 𝑥𝑉𝑦𝑉 ) ) → 𝑥 ∈ ( Base ‘ 𝑅 ) )
21 simprr ( ( 𝜑 ∧ ( 𝑥𝑉𝑦𝑉 ) ) → 𝑦𝑉 )
22 21 19 eleqtrd ( ( 𝜑 ∧ ( 𝑥𝑉𝑦𝑉 ) ) → 𝑦 ∈ ( Base ‘ 𝑅 ) )
23 eqid ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 )
24 23 3 ringacl ( ( 𝑅 ∈ Ring ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) → ( 𝑥 + 𝑦 ) ∈ ( Base ‘ 𝑅 ) )
25 17 20 22 24 syl3anc ( ( 𝜑 ∧ ( 𝑥𝑉𝑦𝑉 ) ) → ( 𝑥 + 𝑦 ) ∈ ( Base ‘ 𝑅 ) )
26 25 19 eleqtrrd ( ( 𝜑 ∧ ( 𝑥𝑉𝑦𝑉 ) ) → ( 𝑥 + 𝑦 ) ∈ 𝑉 )
27 6 12 10 26 7 ercpbl ( ( 𝜑 ∧ ( 𝑎𝑉𝑏𝑉 ) ∧ ( 𝑝𝑉𝑞𝑉 ) ) → ( ( ( ( 𝑢𝑉 ↦ [ 𝑢 ] ) ‘ 𝑎 ) = ( ( 𝑢𝑉 ↦ [ 𝑢 ] ) ‘ 𝑝 ) ∧ ( ( 𝑢𝑉 ↦ [ 𝑢 ] ) ‘ 𝑏 ) = ( ( 𝑢𝑉 ↦ [ 𝑢 ] ) ‘ 𝑞 ) ) → ( ( 𝑢𝑉 ↦ [ 𝑢 ] ) ‘ ( 𝑎 + 𝑏 ) ) = ( ( 𝑢𝑉 ↦ [ 𝑢 ] ) ‘ ( 𝑝 + 𝑞 ) ) ) )
28 23 4 ringcl ( ( 𝑅 ∈ Ring ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) → ( 𝑥 · 𝑦 ) ∈ ( Base ‘ 𝑅 ) )
29 17 20 22 28 syl3anc ( ( 𝜑 ∧ ( 𝑥𝑉𝑦𝑉 ) ) → ( 𝑥 · 𝑦 ) ∈ ( Base ‘ 𝑅 ) )
30 29 19 eleqtrrd ( ( 𝜑 ∧ ( 𝑥𝑉𝑦𝑉 ) ) → ( 𝑥 · 𝑦 ) ∈ 𝑉 )
31 6 12 10 30 8 ercpbl ( ( 𝜑 ∧ ( 𝑎𝑉𝑏𝑉 ) ∧ ( 𝑝𝑉𝑞𝑉 ) ) → ( ( ( ( 𝑢𝑉 ↦ [ 𝑢 ] ) ‘ 𝑎 ) = ( ( 𝑢𝑉 ↦ [ 𝑢 ] ) ‘ 𝑝 ) ∧ ( ( 𝑢𝑉 ↦ [ 𝑢 ] ) ‘ 𝑏 ) = ( ( 𝑢𝑉 ↦ [ 𝑢 ] ) ‘ 𝑞 ) ) → ( ( 𝑢𝑉 ↦ [ 𝑢 ] ) ‘ ( 𝑎 · 𝑏 ) ) = ( ( 𝑢𝑉 ↦ [ 𝑢 ] ) ‘ ( 𝑝 · 𝑞 ) ) ) )
32 15 2 3 4 5 16 27 31 9 imasring ( 𝜑 → ( 𝑈 ∈ Ring ∧ ( ( 𝑢𝑉 ↦ [ 𝑢 ] ) ‘ 1 ) = ( 1r𝑈 ) ) )
33 6 12 10 divsfval ( 𝜑 → ( ( 𝑢𝑉 ↦ [ 𝑢 ] ) ‘ 1 ) = [ 1 ] )
34 33 eqcomd ( 𝜑 → [ 1 ] = ( ( 𝑢𝑉 ↦ [ 𝑢 ] ) ‘ 1 ) )
35 34 eqeq1d ( 𝜑 → ( [ 1 ] = ( 1r𝑈 ) ↔ ( ( 𝑢𝑉 ↦ [ 𝑢 ] ) ‘ 1 ) = ( 1r𝑈 ) ) )
36 35 anbi2d ( 𝜑 → ( ( 𝑈 ∈ Ring ∧ [ 1 ] = ( 1r𝑈 ) ) ↔ ( 𝑈 ∈ Ring ∧ ( ( 𝑢𝑉 ↦ [ 𝑢 ] ) ‘ 1 ) = ( 1r𝑈 ) ) ) )
37 32 36 mpbird ( 𝜑 → ( 𝑈 ∈ Ring ∧ [ 1 ] = ( 1r𝑈 ) ) )