Step |
Hyp |
Ref |
Expression |
1 |
|
qusring2.u |
⊢ ( 𝜑 → 𝑈 = ( 𝑅 /s ∼ ) ) |
2 |
|
qusring2.v |
⊢ ( 𝜑 → 𝑉 = ( Base ‘ 𝑅 ) ) |
3 |
|
qusring2.p |
⊢ + = ( +g ‘ 𝑅 ) |
4 |
|
qusring2.t |
⊢ · = ( .r ‘ 𝑅 ) |
5 |
|
qusring2.o |
⊢ 1 = ( 1r ‘ 𝑅 ) |
6 |
|
qusring2.r |
⊢ ( 𝜑 → ∼ Er 𝑉 ) |
7 |
|
qusring2.e1 |
⊢ ( 𝜑 → ( ( 𝑎 ∼ 𝑝 ∧ 𝑏 ∼ 𝑞 ) → ( 𝑎 + 𝑏 ) ∼ ( 𝑝 + 𝑞 ) ) ) |
8 |
|
qusring2.e2 |
⊢ ( 𝜑 → ( ( 𝑎 ∼ 𝑝 ∧ 𝑏 ∼ 𝑞 ) → ( 𝑎 · 𝑏 ) ∼ ( 𝑝 · 𝑞 ) ) ) |
9 |
|
qusring2.x |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
10 |
|
eqid |
⊢ ( 𝑢 ∈ 𝑉 ↦ [ 𝑢 ] ∼ ) = ( 𝑢 ∈ 𝑉 ↦ [ 𝑢 ] ∼ ) |
11 |
|
fvex |
⊢ ( Base ‘ 𝑅 ) ∈ V |
12 |
2 11
|
eqeltrdi |
⊢ ( 𝜑 → 𝑉 ∈ V ) |
13 |
|
erex |
⊢ ( ∼ Er 𝑉 → ( 𝑉 ∈ V → ∼ ∈ V ) ) |
14 |
6 12 13
|
sylc |
⊢ ( 𝜑 → ∼ ∈ V ) |
15 |
1 2 10 14 9
|
qusval |
⊢ ( 𝜑 → 𝑈 = ( ( 𝑢 ∈ 𝑉 ↦ [ 𝑢 ] ∼ ) “s 𝑅 ) ) |
16 |
1 2 10 14 9
|
quslem |
⊢ ( 𝜑 → ( 𝑢 ∈ 𝑉 ↦ [ 𝑢 ] ∼ ) : 𝑉 –onto→ ( 𝑉 / ∼ ) ) |
17 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) → 𝑅 ∈ Ring ) |
18 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) → 𝑥 ∈ 𝑉 ) |
19 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) → 𝑉 = ( Base ‘ 𝑅 ) ) |
20 |
18 19
|
eleqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) → 𝑥 ∈ ( Base ‘ 𝑅 ) ) |
21 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) → 𝑦 ∈ 𝑉 ) |
22 |
21 19
|
eleqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) → 𝑦 ∈ ( Base ‘ 𝑅 ) ) |
23 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
24 |
23 3
|
ringacl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) → ( 𝑥 + 𝑦 ) ∈ ( Base ‘ 𝑅 ) ) |
25 |
17 20 22 24
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) → ( 𝑥 + 𝑦 ) ∈ ( Base ‘ 𝑅 ) ) |
26 |
25 19
|
eleqtrrd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) → ( 𝑥 + 𝑦 ) ∈ 𝑉 ) |
27 |
6 12 10 26 7
|
ercpbl |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ∧ ( 𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉 ) ) → ( ( ( ( 𝑢 ∈ 𝑉 ↦ [ 𝑢 ] ∼ ) ‘ 𝑎 ) = ( ( 𝑢 ∈ 𝑉 ↦ [ 𝑢 ] ∼ ) ‘ 𝑝 ) ∧ ( ( 𝑢 ∈ 𝑉 ↦ [ 𝑢 ] ∼ ) ‘ 𝑏 ) = ( ( 𝑢 ∈ 𝑉 ↦ [ 𝑢 ] ∼ ) ‘ 𝑞 ) ) → ( ( 𝑢 ∈ 𝑉 ↦ [ 𝑢 ] ∼ ) ‘ ( 𝑎 + 𝑏 ) ) = ( ( 𝑢 ∈ 𝑉 ↦ [ 𝑢 ] ∼ ) ‘ ( 𝑝 + 𝑞 ) ) ) ) |
28 |
23 4
|
ringcl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ ( Base ‘ 𝑅 ) ) → ( 𝑥 · 𝑦 ) ∈ ( Base ‘ 𝑅 ) ) |
29 |
17 20 22 28
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) → ( 𝑥 · 𝑦 ) ∈ ( Base ‘ 𝑅 ) ) |
30 |
29 19
|
eleqtrrd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) ) → ( 𝑥 · 𝑦 ) ∈ 𝑉 ) |
31 |
6 12 10 30 8
|
ercpbl |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ∧ ( 𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉 ) ) → ( ( ( ( 𝑢 ∈ 𝑉 ↦ [ 𝑢 ] ∼ ) ‘ 𝑎 ) = ( ( 𝑢 ∈ 𝑉 ↦ [ 𝑢 ] ∼ ) ‘ 𝑝 ) ∧ ( ( 𝑢 ∈ 𝑉 ↦ [ 𝑢 ] ∼ ) ‘ 𝑏 ) = ( ( 𝑢 ∈ 𝑉 ↦ [ 𝑢 ] ∼ ) ‘ 𝑞 ) ) → ( ( 𝑢 ∈ 𝑉 ↦ [ 𝑢 ] ∼ ) ‘ ( 𝑎 · 𝑏 ) ) = ( ( 𝑢 ∈ 𝑉 ↦ [ 𝑢 ] ∼ ) ‘ ( 𝑝 · 𝑞 ) ) ) ) |
32 |
15 2 3 4 5 16 27 31 9
|
imasring |
⊢ ( 𝜑 → ( 𝑈 ∈ Ring ∧ ( ( 𝑢 ∈ 𝑉 ↦ [ 𝑢 ] ∼ ) ‘ 1 ) = ( 1r ‘ 𝑈 ) ) ) |
33 |
6 12 10
|
divsfval |
⊢ ( 𝜑 → ( ( 𝑢 ∈ 𝑉 ↦ [ 𝑢 ] ∼ ) ‘ 1 ) = [ 1 ] ∼ ) |
34 |
33
|
eqcomd |
⊢ ( 𝜑 → [ 1 ] ∼ = ( ( 𝑢 ∈ 𝑉 ↦ [ 𝑢 ] ∼ ) ‘ 1 ) ) |
35 |
34
|
eqeq1d |
⊢ ( 𝜑 → ( [ 1 ] ∼ = ( 1r ‘ 𝑈 ) ↔ ( ( 𝑢 ∈ 𝑉 ↦ [ 𝑢 ] ∼ ) ‘ 1 ) = ( 1r ‘ 𝑈 ) ) ) |
36 |
35
|
anbi2d |
⊢ ( 𝜑 → ( ( 𝑈 ∈ Ring ∧ [ 1 ] ∼ = ( 1r ‘ 𝑈 ) ) ↔ ( 𝑈 ∈ Ring ∧ ( ( 𝑢 ∈ 𝑉 ↦ [ 𝑢 ] ∼ ) ‘ 1 ) = ( 1r ‘ 𝑈 ) ) ) ) |
37 |
32 36
|
mpbird |
⊢ ( 𝜑 → ( 𝑈 ∈ Ring ∧ [ 1 ] ∼ = ( 1r ‘ 𝑈 ) ) ) |