Description: The scalar field of a quotient structure. (Contributed by Mario Carneiro, 24-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | qusbas.u | ⊢ ( 𝜑 → 𝑈 = ( 𝑅 /s ∼ ) ) | |
| qusbas.v | ⊢ ( 𝜑 → 𝑉 = ( Base ‘ 𝑅 ) ) | ||
| qusbas.e | ⊢ ( 𝜑 → ∼ ∈ 𝑊 ) | ||
| qusbas.r | ⊢ ( 𝜑 → 𝑅 ∈ 𝑍 ) | ||
| quss.k | ⊢ 𝐾 = ( Scalar ‘ 𝑅 ) | ||
| Assertion | quss | ⊢ ( 𝜑 → 𝐾 = ( Scalar ‘ 𝑈 ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | qusbas.u | ⊢ ( 𝜑 → 𝑈 = ( 𝑅 /s ∼ ) ) | |
| 2 | qusbas.v | ⊢ ( 𝜑 → 𝑉 = ( Base ‘ 𝑅 ) ) | |
| 3 | qusbas.e | ⊢ ( 𝜑 → ∼ ∈ 𝑊 ) | |
| 4 | qusbas.r | ⊢ ( 𝜑 → 𝑅 ∈ 𝑍 ) | |
| 5 | quss.k | ⊢ 𝐾 = ( Scalar ‘ 𝑅 ) | |
| 6 | eqid | ⊢ ( 𝑥 ∈ 𝑉 ↦ [ 𝑥 ] ∼ ) = ( 𝑥 ∈ 𝑉 ↦ [ 𝑥 ] ∼ ) | |
| 7 | 1 2 6 3 4 | qusval | ⊢ ( 𝜑 → 𝑈 = ( ( 𝑥 ∈ 𝑉 ↦ [ 𝑥 ] ∼ ) “s 𝑅 ) ) | 
| 8 | 1 2 6 3 4 | quslem | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑉 ↦ [ 𝑥 ] ∼ ) : 𝑉 –onto→ ( 𝑉 / ∼ ) ) | 
| 9 | 7 2 8 4 5 | imassca | ⊢ ( 𝜑 → 𝐾 = ( Scalar ‘ 𝑈 ) ) |