Metamath Proof Explorer


Theorem qussub

Description: Value of the group subtraction operation in a quotient group. (Contributed by Mario Carneiro, 18-Sep-2015)

Ref Expression
Hypotheses qusgrp.h 𝐻 = ( 𝐺 /s ( 𝐺 ~QG 𝑆 ) )
qusinv.v 𝑉 = ( Base ‘ 𝐺 )
qussub.p = ( -g𝐺 )
qussub.a 𝑁 = ( -g𝐻 )
Assertion qussub ( ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑋𝑉𝑌𝑉 ) → ( [ 𝑋 ] ( 𝐺 ~QG 𝑆 ) 𝑁 [ 𝑌 ] ( 𝐺 ~QG 𝑆 ) ) = [ ( 𝑋 𝑌 ) ] ( 𝐺 ~QG 𝑆 ) )

Proof

Step Hyp Ref Expression
1 qusgrp.h 𝐻 = ( 𝐺 /s ( 𝐺 ~QG 𝑆 ) )
2 qusinv.v 𝑉 = ( Base ‘ 𝐺 )
3 qussub.p = ( -g𝐺 )
4 qussub.a 𝑁 = ( -g𝐻 )
5 eqid ( Base ‘ 𝐻 ) = ( Base ‘ 𝐻 )
6 1 2 5 quseccl ( ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑋𝑉 ) → [ 𝑋 ] ( 𝐺 ~QG 𝑆 ) ∈ ( Base ‘ 𝐻 ) )
7 6 3adant3 ( ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑋𝑉𝑌𝑉 ) → [ 𝑋 ] ( 𝐺 ~QG 𝑆 ) ∈ ( Base ‘ 𝐻 ) )
8 1 2 5 quseccl ( ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑌𝑉 ) → [ 𝑌 ] ( 𝐺 ~QG 𝑆 ) ∈ ( Base ‘ 𝐻 ) )
9 eqid ( +g𝐻 ) = ( +g𝐻 )
10 eqid ( invg𝐻 ) = ( invg𝐻 )
11 5 9 10 4 grpsubval ( ( [ 𝑋 ] ( 𝐺 ~QG 𝑆 ) ∈ ( Base ‘ 𝐻 ) ∧ [ 𝑌 ] ( 𝐺 ~QG 𝑆 ) ∈ ( Base ‘ 𝐻 ) ) → ( [ 𝑋 ] ( 𝐺 ~QG 𝑆 ) 𝑁 [ 𝑌 ] ( 𝐺 ~QG 𝑆 ) ) = ( [ 𝑋 ] ( 𝐺 ~QG 𝑆 ) ( +g𝐻 ) ( ( invg𝐻 ) ‘ [ 𝑌 ] ( 𝐺 ~QG 𝑆 ) ) ) )
12 7 8 11 3imp3i2an ( ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑋𝑉𝑌𝑉 ) → ( [ 𝑋 ] ( 𝐺 ~QG 𝑆 ) 𝑁 [ 𝑌 ] ( 𝐺 ~QG 𝑆 ) ) = ( [ 𝑋 ] ( 𝐺 ~QG 𝑆 ) ( +g𝐻 ) ( ( invg𝐻 ) ‘ [ 𝑌 ] ( 𝐺 ~QG 𝑆 ) ) ) )
13 eqid ( invg𝐺 ) = ( invg𝐺 )
14 1 2 13 10 qusinv ( ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑌𝑉 ) → ( ( invg𝐻 ) ‘ [ 𝑌 ] ( 𝐺 ~QG 𝑆 ) ) = [ ( ( invg𝐺 ) ‘ 𝑌 ) ] ( 𝐺 ~QG 𝑆 ) )
15 14 3adant2 ( ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑋𝑉𝑌𝑉 ) → ( ( invg𝐻 ) ‘ [ 𝑌 ] ( 𝐺 ~QG 𝑆 ) ) = [ ( ( invg𝐺 ) ‘ 𝑌 ) ] ( 𝐺 ~QG 𝑆 ) )
16 15 oveq2d ( ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑋𝑉𝑌𝑉 ) → ( [ 𝑋 ] ( 𝐺 ~QG 𝑆 ) ( +g𝐻 ) ( ( invg𝐻 ) ‘ [ 𝑌 ] ( 𝐺 ~QG 𝑆 ) ) ) = ( [ 𝑋 ] ( 𝐺 ~QG 𝑆 ) ( +g𝐻 ) [ ( ( invg𝐺 ) ‘ 𝑌 ) ] ( 𝐺 ~QG 𝑆 ) ) )
17 nsgsubg ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) → 𝑆 ∈ ( SubGrp ‘ 𝐺 ) )
18 subgrcl ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → 𝐺 ∈ Grp )
19 17 18 syl ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) → 𝐺 ∈ Grp )
20 2 13 grpinvcl ( ( 𝐺 ∈ Grp ∧ 𝑌𝑉 ) → ( ( invg𝐺 ) ‘ 𝑌 ) ∈ 𝑉 )
21 19 20 sylan ( ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑌𝑉 ) → ( ( invg𝐺 ) ‘ 𝑌 ) ∈ 𝑉 )
22 21 3adant2 ( ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑋𝑉𝑌𝑉 ) → ( ( invg𝐺 ) ‘ 𝑌 ) ∈ 𝑉 )
23 eqid ( +g𝐺 ) = ( +g𝐺 )
24 1 2 23 9 qusadd ( ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑋𝑉 ∧ ( ( invg𝐺 ) ‘ 𝑌 ) ∈ 𝑉 ) → ( [ 𝑋 ] ( 𝐺 ~QG 𝑆 ) ( +g𝐻 ) [ ( ( invg𝐺 ) ‘ 𝑌 ) ] ( 𝐺 ~QG 𝑆 ) ) = [ ( 𝑋 ( +g𝐺 ) ( ( invg𝐺 ) ‘ 𝑌 ) ) ] ( 𝐺 ~QG 𝑆 ) )
25 22 24 syld3an3 ( ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑋𝑉𝑌𝑉 ) → ( [ 𝑋 ] ( 𝐺 ~QG 𝑆 ) ( +g𝐻 ) [ ( ( invg𝐺 ) ‘ 𝑌 ) ] ( 𝐺 ~QG 𝑆 ) ) = [ ( 𝑋 ( +g𝐺 ) ( ( invg𝐺 ) ‘ 𝑌 ) ) ] ( 𝐺 ~QG 𝑆 ) )
26 2 23 13 3 grpsubval ( ( 𝑋𝑉𝑌𝑉 ) → ( 𝑋 𝑌 ) = ( 𝑋 ( +g𝐺 ) ( ( invg𝐺 ) ‘ 𝑌 ) ) )
27 26 3adant1 ( ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑋𝑉𝑌𝑉 ) → ( 𝑋 𝑌 ) = ( 𝑋 ( +g𝐺 ) ( ( invg𝐺 ) ‘ 𝑌 ) ) )
28 27 eceq1d ( ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑋𝑉𝑌𝑉 ) → [ ( 𝑋 𝑌 ) ] ( 𝐺 ~QG 𝑆 ) = [ ( 𝑋 ( +g𝐺 ) ( ( invg𝐺 ) ‘ 𝑌 ) ) ] ( 𝐺 ~QG 𝑆 ) )
29 25 28 eqtr4d ( ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑋𝑉𝑌𝑉 ) → ( [ 𝑋 ] ( 𝐺 ~QG 𝑆 ) ( +g𝐻 ) [ ( ( invg𝐺 ) ‘ 𝑌 ) ] ( 𝐺 ~QG 𝑆 ) ) = [ ( 𝑋 𝑌 ) ] ( 𝐺 ~QG 𝑆 ) )
30 12 16 29 3eqtrd ( ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑋𝑉𝑌𝑉 ) → ( [ 𝑋 ] ( 𝐺 ~QG 𝑆 ) 𝑁 [ 𝑌 ] ( 𝐺 ~QG 𝑆 ) ) = [ ( 𝑋 𝑌 ) ] ( 𝐺 ~QG 𝑆 ) )