| Step |
Hyp |
Ref |
Expression |
| 1 |
|
qusgrp.h |
⊢ 𝐻 = ( 𝐺 /s ( 𝐺 ~QG 𝑆 ) ) |
| 2 |
|
qusinv.v |
⊢ 𝑉 = ( Base ‘ 𝐺 ) |
| 3 |
|
qussub.p |
⊢ − = ( -g ‘ 𝐺 ) |
| 4 |
|
qussub.a |
⊢ 𝑁 = ( -g ‘ 𝐻 ) |
| 5 |
|
eqid |
⊢ ( Base ‘ 𝐻 ) = ( Base ‘ 𝐻 ) |
| 6 |
1 2 5
|
quseccl |
⊢ ( ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑋 ∈ 𝑉 ) → [ 𝑋 ] ( 𝐺 ~QG 𝑆 ) ∈ ( Base ‘ 𝐻 ) ) |
| 7 |
6
|
3adant3 |
⊢ ( ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → [ 𝑋 ] ( 𝐺 ~QG 𝑆 ) ∈ ( Base ‘ 𝐻 ) ) |
| 8 |
1 2 5
|
quseccl |
⊢ ( ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑌 ∈ 𝑉 ) → [ 𝑌 ] ( 𝐺 ~QG 𝑆 ) ∈ ( Base ‘ 𝐻 ) ) |
| 9 |
|
eqid |
⊢ ( +g ‘ 𝐻 ) = ( +g ‘ 𝐻 ) |
| 10 |
|
eqid |
⊢ ( invg ‘ 𝐻 ) = ( invg ‘ 𝐻 ) |
| 11 |
5 9 10 4
|
grpsubval |
⊢ ( ( [ 𝑋 ] ( 𝐺 ~QG 𝑆 ) ∈ ( Base ‘ 𝐻 ) ∧ [ 𝑌 ] ( 𝐺 ~QG 𝑆 ) ∈ ( Base ‘ 𝐻 ) ) → ( [ 𝑋 ] ( 𝐺 ~QG 𝑆 ) 𝑁 [ 𝑌 ] ( 𝐺 ~QG 𝑆 ) ) = ( [ 𝑋 ] ( 𝐺 ~QG 𝑆 ) ( +g ‘ 𝐻 ) ( ( invg ‘ 𝐻 ) ‘ [ 𝑌 ] ( 𝐺 ~QG 𝑆 ) ) ) ) |
| 12 |
7 8 11
|
3imp3i2an |
⊢ ( ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → ( [ 𝑋 ] ( 𝐺 ~QG 𝑆 ) 𝑁 [ 𝑌 ] ( 𝐺 ~QG 𝑆 ) ) = ( [ 𝑋 ] ( 𝐺 ~QG 𝑆 ) ( +g ‘ 𝐻 ) ( ( invg ‘ 𝐻 ) ‘ [ 𝑌 ] ( 𝐺 ~QG 𝑆 ) ) ) ) |
| 13 |
|
eqid |
⊢ ( invg ‘ 𝐺 ) = ( invg ‘ 𝐺 ) |
| 14 |
1 2 13 10
|
qusinv |
⊢ ( ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑌 ∈ 𝑉 ) → ( ( invg ‘ 𝐻 ) ‘ [ 𝑌 ] ( 𝐺 ~QG 𝑆 ) ) = [ ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) ] ( 𝐺 ~QG 𝑆 ) ) |
| 15 |
14
|
3adant2 |
⊢ ( ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → ( ( invg ‘ 𝐻 ) ‘ [ 𝑌 ] ( 𝐺 ~QG 𝑆 ) ) = [ ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) ] ( 𝐺 ~QG 𝑆 ) ) |
| 16 |
15
|
oveq2d |
⊢ ( ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → ( [ 𝑋 ] ( 𝐺 ~QG 𝑆 ) ( +g ‘ 𝐻 ) ( ( invg ‘ 𝐻 ) ‘ [ 𝑌 ] ( 𝐺 ~QG 𝑆 ) ) ) = ( [ 𝑋 ] ( 𝐺 ~QG 𝑆 ) ( +g ‘ 𝐻 ) [ ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) ] ( 𝐺 ~QG 𝑆 ) ) ) |
| 17 |
|
nsgsubg |
⊢ ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) → 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) |
| 18 |
|
subgrcl |
⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → 𝐺 ∈ Grp ) |
| 19 |
17 18
|
syl |
⊢ ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) → 𝐺 ∈ Grp ) |
| 20 |
2 13
|
grpinvcl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑌 ∈ 𝑉 ) → ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) ∈ 𝑉 ) |
| 21 |
19 20
|
sylan |
⊢ ( ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑌 ∈ 𝑉 ) → ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) ∈ 𝑉 ) |
| 22 |
21
|
3adant2 |
⊢ ( ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) ∈ 𝑉 ) |
| 23 |
|
eqid |
⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) |
| 24 |
1 2 23 9
|
qusadd |
⊢ ( ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑋 ∈ 𝑉 ∧ ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) ∈ 𝑉 ) → ( [ 𝑋 ] ( 𝐺 ~QG 𝑆 ) ( +g ‘ 𝐻 ) [ ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) ] ( 𝐺 ~QG 𝑆 ) ) = [ ( 𝑋 ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) ) ] ( 𝐺 ~QG 𝑆 ) ) |
| 25 |
22 24
|
syld3an3 |
⊢ ( ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → ( [ 𝑋 ] ( 𝐺 ~QG 𝑆 ) ( +g ‘ 𝐻 ) [ ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) ] ( 𝐺 ~QG 𝑆 ) ) = [ ( 𝑋 ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) ) ] ( 𝐺 ~QG 𝑆 ) ) |
| 26 |
2 23 13 3
|
grpsubval |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → ( 𝑋 − 𝑌 ) = ( 𝑋 ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) ) ) |
| 27 |
26
|
3adant1 |
⊢ ( ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → ( 𝑋 − 𝑌 ) = ( 𝑋 ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) ) ) |
| 28 |
27
|
eceq1d |
⊢ ( ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → [ ( 𝑋 − 𝑌 ) ] ( 𝐺 ~QG 𝑆 ) = [ ( 𝑋 ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) ) ] ( 𝐺 ~QG 𝑆 ) ) |
| 29 |
25 28
|
eqtr4d |
⊢ ( ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → ( [ 𝑋 ] ( 𝐺 ~QG 𝑆 ) ( +g ‘ 𝐻 ) [ ( ( invg ‘ 𝐺 ) ‘ 𝑌 ) ] ( 𝐺 ~QG 𝑆 ) ) = [ ( 𝑋 − 𝑌 ) ] ( 𝐺 ~QG 𝑆 ) ) |
| 30 |
12 16 29
|
3eqtrd |
⊢ ( ( 𝑆 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → ( [ 𝑋 ] ( 𝐺 ~QG 𝑆 ) 𝑁 [ 𝑌 ] ( 𝐺 ~QG 𝑆 ) ) = [ ( 𝑋 − 𝑌 ) ] ( 𝐺 ~QG 𝑆 ) ) |