Step |
Hyp |
Ref |
Expression |
1 |
|
qustgp.h |
⊢ 𝐻 = ( 𝐺 /s ( 𝐺 ~QG 𝑌 ) ) |
2 |
|
qustgphaus.j |
⊢ 𝐽 = ( TopOpen ‘ 𝐺 ) |
3 |
|
qustgphaus.k |
⊢ 𝐾 = ( TopOpen ‘ 𝐻 ) |
4 |
|
eqid |
⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) |
5 |
1 4
|
qus0 |
⊢ ( 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) → [ ( 0g ‘ 𝐺 ) ] ( 𝐺 ~QG 𝑌 ) = ( 0g ‘ 𝐻 ) ) |
6 |
5
|
3ad2ant2 |
⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑌 ∈ ( Clsd ‘ 𝐽 ) ) → [ ( 0g ‘ 𝐺 ) ] ( 𝐺 ~QG 𝑌 ) = ( 0g ‘ 𝐻 ) ) |
7 |
|
tgpgrp |
⊢ ( 𝐺 ∈ TopGrp → 𝐺 ∈ Grp ) |
8 |
7
|
3ad2ant1 |
⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑌 ∈ ( Clsd ‘ 𝐽 ) ) → 𝐺 ∈ Grp ) |
9 |
|
eqid |
⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) |
10 |
9 4
|
grpidcl |
⊢ ( 𝐺 ∈ Grp → ( 0g ‘ 𝐺 ) ∈ ( Base ‘ 𝐺 ) ) |
11 |
8 10
|
syl |
⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑌 ∈ ( Clsd ‘ 𝐽 ) ) → ( 0g ‘ 𝐺 ) ∈ ( Base ‘ 𝐺 ) ) |
12 |
|
ovex |
⊢ ( 𝐺 ~QG 𝑌 ) ∈ V |
13 |
12
|
ecelqsi |
⊢ ( ( 0g ‘ 𝐺 ) ∈ ( Base ‘ 𝐺 ) → [ ( 0g ‘ 𝐺 ) ] ( 𝐺 ~QG 𝑌 ) ∈ ( ( Base ‘ 𝐺 ) / ( 𝐺 ~QG 𝑌 ) ) ) |
14 |
11 13
|
syl |
⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑌 ∈ ( Clsd ‘ 𝐽 ) ) → [ ( 0g ‘ 𝐺 ) ] ( 𝐺 ~QG 𝑌 ) ∈ ( ( Base ‘ 𝐺 ) / ( 𝐺 ~QG 𝑌 ) ) ) |
15 |
6 14
|
eqeltrrd |
⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑌 ∈ ( Clsd ‘ 𝐽 ) ) → ( 0g ‘ 𝐻 ) ∈ ( ( Base ‘ 𝐺 ) / ( 𝐺 ~QG 𝑌 ) ) ) |
16 |
15
|
snssd |
⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑌 ∈ ( Clsd ‘ 𝐽 ) ) → { ( 0g ‘ 𝐻 ) } ⊆ ( ( Base ‘ 𝐺 ) / ( 𝐺 ~QG 𝑌 ) ) ) |
17 |
|
eqid |
⊢ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ [ 𝑥 ] ( 𝐺 ~QG 𝑌 ) ) = ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ [ 𝑥 ] ( 𝐺 ~QG 𝑌 ) ) |
18 |
17
|
mptpreima |
⊢ ( ◡ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ [ 𝑥 ] ( 𝐺 ~QG 𝑌 ) ) “ { ( 0g ‘ 𝐻 ) } ) = { 𝑥 ∈ ( Base ‘ 𝐺 ) ∣ [ 𝑥 ] ( 𝐺 ~QG 𝑌 ) ∈ { ( 0g ‘ 𝐻 ) } } |
19 |
|
nsgsubg |
⊢ ( 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) → 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ) |
20 |
19
|
3ad2ant2 |
⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑌 ∈ ( Clsd ‘ 𝐽 ) ) → 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ) |
21 |
|
eqid |
⊢ ( 𝐺 ~QG 𝑌 ) = ( 𝐺 ~QG 𝑌 ) |
22 |
9 21 4
|
eqgid |
⊢ ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) → [ ( 0g ‘ 𝐺 ) ] ( 𝐺 ~QG 𝑌 ) = 𝑌 ) |
23 |
20 22
|
syl |
⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑌 ∈ ( Clsd ‘ 𝐽 ) ) → [ ( 0g ‘ 𝐺 ) ] ( 𝐺 ~QG 𝑌 ) = 𝑌 ) |
24 |
9
|
subgss |
⊢ ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) → 𝑌 ⊆ ( Base ‘ 𝐺 ) ) |
25 |
20 24
|
syl |
⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑌 ∈ ( Clsd ‘ 𝐽 ) ) → 𝑌 ⊆ ( Base ‘ 𝐺 ) ) |
26 |
23 25
|
eqsstrd |
⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑌 ∈ ( Clsd ‘ 𝐽 ) ) → [ ( 0g ‘ 𝐺 ) ] ( 𝐺 ~QG 𝑌 ) ⊆ ( Base ‘ 𝐺 ) ) |
27 |
|
sseqin2 |
⊢ ( [ ( 0g ‘ 𝐺 ) ] ( 𝐺 ~QG 𝑌 ) ⊆ ( Base ‘ 𝐺 ) ↔ ( ( Base ‘ 𝐺 ) ∩ [ ( 0g ‘ 𝐺 ) ] ( 𝐺 ~QG 𝑌 ) ) = [ ( 0g ‘ 𝐺 ) ] ( 𝐺 ~QG 𝑌 ) ) |
28 |
26 27
|
sylib |
⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑌 ∈ ( Clsd ‘ 𝐽 ) ) → ( ( Base ‘ 𝐺 ) ∩ [ ( 0g ‘ 𝐺 ) ] ( 𝐺 ~QG 𝑌 ) ) = [ ( 0g ‘ 𝐺 ) ] ( 𝐺 ~QG 𝑌 ) ) |
29 |
9 21
|
eqger |
⊢ ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) → ( 𝐺 ~QG 𝑌 ) Er ( Base ‘ 𝐺 ) ) |
30 |
20 29
|
syl |
⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑌 ∈ ( Clsd ‘ 𝐽 ) ) → ( 𝐺 ~QG 𝑌 ) Er ( Base ‘ 𝐺 ) ) |
31 |
30 11
|
erth |
⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑌 ∈ ( Clsd ‘ 𝐽 ) ) → ( ( 0g ‘ 𝐺 ) ( 𝐺 ~QG 𝑌 ) 𝑥 ↔ [ ( 0g ‘ 𝐺 ) ] ( 𝐺 ~QG 𝑌 ) = [ 𝑥 ] ( 𝐺 ~QG 𝑌 ) ) ) |
32 |
31
|
adantr |
⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑌 ∈ ( Clsd ‘ 𝐽 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) → ( ( 0g ‘ 𝐺 ) ( 𝐺 ~QG 𝑌 ) 𝑥 ↔ [ ( 0g ‘ 𝐺 ) ] ( 𝐺 ~QG 𝑌 ) = [ 𝑥 ] ( 𝐺 ~QG 𝑌 ) ) ) |
33 |
6
|
adantr |
⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑌 ∈ ( Clsd ‘ 𝐽 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) → [ ( 0g ‘ 𝐺 ) ] ( 𝐺 ~QG 𝑌 ) = ( 0g ‘ 𝐻 ) ) |
34 |
33
|
eqeq1d |
⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑌 ∈ ( Clsd ‘ 𝐽 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) → ( [ ( 0g ‘ 𝐺 ) ] ( 𝐺 ~QG 𝑌 ) = [ 𝑥 ] ( 𝐺 ~QG 𝑌 ) ↔ ( 0g ‘ 𝐻 ) = [ 𝑥 ] ( 𝐺 ~QG 𝑌 ) ) ) |
35 |
32 34
|
bitrd |
⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑌 ∈ ( Clsd ‘ 𝐽 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) → ( ( 0g ‘ 𝐺 ) ( 𝐺 ~QG 𝑌 ) 𝑥 ↔ ( 0g ‘ 𝐻 ) = [ 𝑥 ] ( 𝐺 ~QG 𝑌 ) ) ) |
36 |
|
vex |
⊢ 𝑥 ∈ V |
37 |
|
fvex |
⊢ ( 0g ‘ 𝐺 ) ∈ V |
38 |
36 37
|
elec |
⊢ ( 𝑥 ∈ [ ( 0g ‘ 𝐺 ) ] ( 𝐺 ~QG 𝑌 ) ↔ ( 0g ‘ 𝐺 ) ( 𝐺 ~QG 𝑌 ) 𝑥 ) |
39 |
|
fvex |
⊢ ( 0g ‘ 𝐻 ) ∈ V |
40 |
39
|
elsn2 |
⊢ ( [ 𝑥 ] ( 𝐺 ~QG 𝑌 ) ∈ { ( 0g ‘ 𝐻 ) } ↔ [ 𝑥 ] ( 𝐺 ~QG 𝑌 ) = ( 0g ‘ 𝐻 ) ) |
41 |
|
eqcom |
⊢ ( [ 𝑥 ] ( 𝐺 ~QG 𝑌 ) = ( 0g ‘ 𝐻 ) ↔ ( 0g ‘ 𝐻 ) = [ 𝑥 ] ( 𝐺 ~QG 𝑌 ) ) |
42 |
40 41
|
bitri |
⊢ ( [ 𝑥 ] ( 𝐺 ~QG 𝑌 ) ∈ { ( 0g ‘ 𝐻 ) } ↔ ( 0g ‘ 𝐻 ) = [ 𝑥 ] ( 𝐺 ~QG 𝑌 ) ) |
43 |
35 38 42
|
3bitr4g |
⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑌 ∈ ( Clsd ‘ 𝐽 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ) → ( 𝑥 ∈ [ ( 0g ‘ 𝐺 ) ] ( 𝐺 ~QG 𝑌 ) ↔ [ 𝑥 ] ( 𝐺 ~QG 𝑌 ) ∈ { ( 0g ‘ 𝐻 ) } ) ) |
44 |
43
|
rabbi2dva |
⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑌 ∈ ( Clsd ‘ 𝐽 ) ) → ( ( Base ‘ 𝐺 ) ∩ [ ( 0g ‘ 𝐺 ) ] ( 𝐺 ~QG 𝑌 ) ) = { 𝑥 ∈ ( Base ‘ 𝐺 ) ∣ [ 𝑥 ] ( 𝐺 ~QG 𝑌 ) ∈ { ( 0g ‘ 𝐻 ) } } ) |
45 |
28 44 23
|
3eqtr3d |
⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑌 ∈ ( Clsd ‘ 𝐽 ) ) → { 𝑥 ∈ ( Base ‘ 𝐺 ) ∣ [ 𝑥 ] ( 𝐺 ~QG 𝑌 ) ∈ { ( 0g ‘ 𝐻 ) } } = 𝑌 ) |
46 |
18 45
|
syl5eq |
⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑌 ∈ ( Clsd ‘ 𝐽 ) ) → ( ◡ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ [ 𝑥 ] ( 𝐺 ~QG 𝑌 ) ) “ { ( 0g ‘ 𝐻 ) } ) = 𝑌 ) |
47 |
|
simp3 |
⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑌 ∈ ( Clsd ‘ 𝐽 ) ) → 𝑌 ∈ ( Clsd ‘ 𝐽 ) ) |
48 |
46 47
|
eqeltrd |
⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑌 ∈ ( Clsd ‘ 𝐽 ) ) → ( ◡ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ [ 𝑥 ] ( 𝐺 ~QG 𝑌 ) ) “ { ( 0g ‘ 𝐻 ) } ) ∈ ( Clsd ‘ 𝐽 ) ) |
49 |
2 9
|
tgptopon |
⊢ ( 𝐺 ∈ TopGrp → 𝐽 ∈ ( TopOn ‘ ( Base ‘ 𝐺 ) ) ) |
50 |
49
|
3ad2ant1 |
⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑌 ∈ ( Clsd ‘ 𝐽 ) ) → 𝐽 ∈ ( TopOn ‘ ( Base ‘ 𝐺 ) ) ) |
51 |
1
|
a1i |
⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑌 ∈ ( Clsd ‘ 𝐽 ) ) → 𝐻 = ( 𝐺 /s ( 𝐺 ~QG 𝑌 ) ) ) |
52 |
|
eqidd |
⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑌 ∈ ( Clsd ‘ 𝐽 ) ) → ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) ) |
53 |
12
|
a1i |
⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑌 ∈ ( Clsd ‘ 𝐽 ) ) → ( 𝐺 ~QG 𝑌 ) ∈ V ) |
54 |
|
simp1 |
⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑌 ∈ ( Clsd ‘ 𝐽 ) ) → 𝐺 ∈ TopGrp ) |
55 |
51 52 17 53 54
|
quslem |
⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑌 ∈ ( Clsd ‘ 𝐽 ) ) → ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ [ 𝑥 ] ( 𝐺 ~QG 𝑌 ) ) : ( Base ‘ 𝐺 ) –onto→ ( ( Base ‘ 𝐺 ) / ( 𝐺 ~QG 𝑌 ) ) ) |
56 |
|
qtopcld |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ ( Base ‘ 𝐺 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ [ 𝑥 ] ( 𝐺 ~QG 𝑌 ) ) : ( Base ‘ 𝐺 ) –onto→ ( ( Base ‘ 𝐺 ) / ( 𝐺 ~QG 𝑌 ) ) ) → ( { ( 0g ‘ 𝐻 ) } ∈ ( Clsd ‘ ( 𝐽 qTop ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ [ 𝑥 ] ( 𝐺 ~QG 𝑌 ) ) ) ) ↔ ( { ( 0g ‘ 𝐻 ) } ⊆ ( ( Base ‘ 𝐺 ) / ( 𝐺 ~QG 𝑌 ) ) ∧ ( ◡ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ [ 𝑥 ] ( 𝐺 ~QG 𝑌 ) ) “ { ( 0g ‘ 𝐻 ) } ) ∈ ( Clsd ‘ 𝐽 ) ) ) ) |
57 |
50 55 56
|
syl2anc |
⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑌 ∈ ( Clsd ‘ 𝐽 ) ) → ( { ( 0g ‘ 𝐻 ) } ∈ ( Clsd ‘ ( 𝐽 qTop ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ [ 𝑥 ] ( 𝐺 ~QG 𝑌 ) ) ) ) ↔ ( { ( 0g ‘ 𝐻 ) } ⊆ ( ( Base ‘ 𝐺 ) / ( 𝐺 ~QG 𝑌 ) ) ∧ ( ◡ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ [ 𝑥 ] ( 𝐺 ~QG 𝑌 ) ) “ { ( 0g ‘ 𝐻 ) } ) ∈ ( Clsd ‘ 𝐽 ) ) ) ) |
58 |
16 48 57
|
mpbir2and |
⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑌 ∈ ( Clsd ‘ 𝐽 ) ) → { ( 0g ‘ 𝐻 ) } ∈ ( Clsd ‘ ( 𝐽 qTop ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ [ 𝑥 ] ( 𝐺 ~QG 𝑌 ) ) ) ) ) |
59 |
51 52 17 53 54
|
qusval |
⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑌 ∈ ( Clsd ‘ 𝐽 ) ) → 𝐻 = ( ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ [ 𝑥 ] ( 𝐺 ~QG 𝑌 ) ) “s 𝐺 ) ) |
60 |
59 52 55 54 2 3
|
imastopn |
⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑌 ∈ ( Clsd ‘ 𝐽 ) ) → 𝐾 = ( 𝐽 qTop ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ [ 𝑥 ] ( 𝐺 ~QG 𝑌 ) ) ) ) |
61 |
60
|
fveq2d |
⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑌 ∈ ( Clsd ‘ 𝐽 ) ) → ( Clsd ‘ 𝐾 ) = ( Clsd ‘ ( 𝐽 qTop ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ [ 𝑥 ] ( 𝐺 ~QG 𝑌 ) ) ) ) ) |
62 |
58 61
|
eleqtrrd |
⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑌 ∈ ( Clsd ‘ 𝐽 ) ) → { ( 0g ‘ 𝐻 ) } ∈ ( Clsd ‘ 𝐾 ) ) |
63 |
1
|
qustgp |
⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ) → 𝐻 ∈ TopGrp ) |
64 |
63
|
3adant3 |
⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑌 ∈ ( Clsd ‘ 𝐽 ) ) → 𝐻 ∈ TopGrp ) |
65 |
|
eqid |
⊢ ( 0g ‘ 𝐻 ) = ( 0g ‘ 𝐻 ) |
66 |
65 3
|
tgphaus |
⊢ ( 𝐻 ∈ TopGrp → ( 𝐾 ∈ Haus ↔ { ( 0g ‘ 𝐻 ) } ∈ ( Clsd ‘ 𝐾 ) ) ) |
67 |
64 66
|
syl |
⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑌 ∈ ( Clsd ‘ 𝐽 ) ) → ( 𝐾 ∈ Haus ↔ { ( 0g ‘ 𝐻 ) } ∈ ( Clsd ‘ 𝐾 ) ) ) |
68 |
62 67
|
mpbird |
⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑌 ∈ ( Clsd ‘ 𝐽 ) ) → 𝐾 ∈ Haus ) |