Metamath Proof Explorer


Theorem qustgpopn

Description: A quotient map in a topological group is an open map. (Contributed by Mario Carneiro, 18-Sep-2015)

Ref Expression
Hypotheses qustgp.h 𝐻 = ( 𝐺 /s ( 𝐺 ~QG 𝑌 ) )
qustgpopn.x 𝑋 = ( Base ‘ 𝐺 )
qustgpopn.j 𝐽 = ( TopOpen ‘ 𝐺 )
qustgpopn.k 𝐾 = ( TopOpen ‘ 𝐻 )
qustgpopn.f 𝐹 = ( 𝑥𝑋 ↦ [ 𝑥 ] ( 𝐺 ~QG 𝑌 ) )
Assertion qustgpopn ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑆𝐽 ) → ( 𝐹𝑆 ) ∈ 𝐾 )

Proof

Step Hyp Ref Expression
1 qustgp.h 𝐻 = ( 𝐺 /s ( 𝐺 ~QG 𝑌 ) )
2 qustgpopn.x 𝑋 = ( Base ‘ 𝐺 )
3 qustgpopn.j 𝐽 = ( TopOpen ‘ 𝐺 )
4 qustgpopn.k 𝐾 = ( TopOpen ‘ 𝐻 )
5 qustgpopn.f 𝐹 = ( 𝑥𝑋 ↦ [ 𝑥 ] ( 𝐺 ~QG 𝑌 ) )
6 imassrn ( 𝐹𝑆 ) ⊆ ran 𝐹
7 1 a1i ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑆𝐽 ) → 𝐻 = ( 𝐺 /s ( 𝐺 ~QG 𝑌 ) ) )
8 2 a1i ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑆𝐽 ) → 𝑋 = ( Base ‘ 𝐺 ) )
9 ovex ( 𝐺 ~QG 𝑌 ) ∈ V
10 9 a1i ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑆𝐽 ) → ( 𝐺 ~QG 𝑌 ) ∈ V )
11 simp1 ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑆𝐽 ) → 𝐺 ∈ TopGrp )
12 7 8 5 10 11 quslem ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑆𝐽 ) → 𝐹 : 𝑋onto→ ( 𝑋 / ( 𝐺 ~QG 𝑌 ) ) )
13 forn ( 𝐹 : 𝑋onto→ ( 𝑋 / ( 𝐺 ~QG 𝑌 ) ) → ran 𝐹 = ( 𝑋 / ( 𝐺 ~QG 𝑌 ) ) )
14 12 13 syl ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑆𝐽 ) → ran 𝐹 = ( 𝑋 / ( 𝐺 ~QG 𝑌 ) ) )
15 6 14 sseqtrid ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑆𝐽 ) → ( 𝐹𝑆 ) ⊆ ( 𝑋 / ( 𝐺 ~QG 𝑌 ) ) )
16 eceq1 ( 𝑥 = 𝑦 → [ 𝑥 ] ( 𝐺 ~QG 𝑌 ) = [ 𝑦 ] ( 𝐺 ~QG 𝑌 ) )
17 16 cbvmptv ( 𝑥𝑋 ↦ [ 𝑥 ] ( 𝐺 ~QG 𝑌 ) ) = ( 𝑦𝑋 ↦ [ 𝑦 ] ( 𝐺 ~QG 𝑌 ) )
18 5 17 eqtri 𝐹 = ( 𝑦𝑋 ↦ [ 𝑦 ] ( 𝐺 ~QG 𝑌 ) )
19 18 mptpreima ( 𝐹 “ ( 𝐹𝑆 ) ) = { 𝑦𝑋 ∣ [ 𝑦 ] ( 𝐺 ~QG 𝑌 ) ∈ ( 𝐹𝑆 ) }
20 19 rabeq2i ( 𝑦 ∈ ( 𝐹 “ ( 𝐹𝑆 ) ) ↔ ( 𝑦𝑋 ∧ [ 𝑦 ] ( 𝐺 ~QG 𝑌 ) ∈ ( 𝐹𝑆 ) ) )
21 5 funmpt2 Fun 𝐹
22 fvelima ( ( Fun 𝐹 ∧ [ 𝑦 ] ( 𝐺 ~QG 𝑌 ) ∈ ( 𝐹𝑆 ) ) → ∃ 𝑧𝑆 ( 𝐹𝑧 ) = [ 𝑦 ] ( 𝐺 ~QG 𝑌 ) )
23 21 22 mpan ( [ 𝑦 ] ( 𝐺 ~QG 𝑌 ) ∈ ( 𝐹𝑆 ) → ∃ 𝑧𝑆 ( 𝐹𝑧 ) = [ 𝑦 ] ( 𝐺 ~QG 𝑌 ) )
24 3 2 tgptopon ( 𝐺 ∈ TopGrp → 𝐽 ∈ ( TopOn ‘ 𝑋 ) )
25 11 24 syl ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑆𝐽 ) → 𝐽 ∈ ( TopOn ‘ 𝑋 ) )
26 simp3 ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑆𝐽 ) → 𝑆𝐽 )
27 toponss ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑆𝐽 ) → 𝑆𝑋 )
28 25 26 27 syl2anc ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑆𝐽 ) → 𝑆𝑋 )
29 28 adantr ( ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑆𝐽 ) ∧ 𝑦𝑋 ) → 𝑆𝑋 )
30 29 sselda ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑆𝐽 ) ∧ 𝑦𝑋 ) ∧ 𝑧𝑆 ) → 𝑧𝑋 )
31 eceq1 ( 𝑥 = 𝑧 → [ 𝑥 ] ( 𝐺 ~QG 𝑌 ) = [ 𝑧 ] ( 𝐺 ~QG 𝑌 ) )
32 ecexg ( ( 𝐺 ~QG 𝑌 ) ∈ V → [ 𝑧 ] ( 𝐺 ~QG 𝑌 ) ∈ V )
33 9 32 ax-mp [ 𝑧 ] ( 𝐺 ~QG 𝑌 ) ∈ V
34 31 5 33 fvmpt ( 𝑧𝑋 → ( 𝐹𝑧 ) = [ 𝑧 ] ( 𝐺 ~QG 𝑌 ) )
35 30 34 syl ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑆𝐽 ) ∧ 𝑦𝑋 ) ∧ 𝑧𝑆 ) → ( 𝐹𝑧 ) = [ 𝑧 ] ( 𝐺 ~QG 𝑌 ) )
36 35 eqeq1d ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑆𝐽 ) ∧ 𝑦𝑋 ) ∧ 𝑧𝑆 ) → ( ( 𝐹𝑧 ) = [ 𝑦 ] ( 𝐺 ~QG 𝑌 ) ↔ [ 𝑧 ] ( 𝐺 ~QG 𝑌 ) = [ 𝑦 ] ( 𝐺 ~QG 𝑌 ) ) )
37 eqcom ( [ 𝑧 ] ( 𝐺 ~QG 𝑌 ) = [ 𝑦 ] ( 𝐺 ~QG 𝑌 ) ↔ [ 𝑦 ] ( 𝐺 ~QG 𝑌 ) = [ 𝑧 ] ( 𝐺 ~QG 𝑌 ) )
38 36 37 bitrdi ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑆𝐽 ) ∧ 𝑦𝑋 ) ∧ 𝑧𝑆 ) → ( ( 𝐹𝑧 ) = [ 𝑦 ] ( 𝐺 ~QG 𝑌 ) ↔ [ 𝑦 ] ( 𝐺 ~QG 𝑌 ) = [ 𝑧 ] ( 𝐺 ~QG 𝑌 ) ) )
39 nsgsubg ( 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) → 𝑌 ∈ ( SubGrp ‘ 𝐺 ) )
40 39 3ad2ant2 ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑆𝐽 ) → 𝑌 ∈ ( SubGrp ‘ 𝐺 ) )
41 40 ad2antrr ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑆𝐽 ) ∧ 𝑦𝑋 ) ∧ 𝑧𝑆 ) → 𝑌 ∈ ( SubGrp ‘ 𝐺 ) )
42 eqid ( 𝐺 ~QG 𝑌 ) = ( 𝐺 ~QG 𝑌 )
43 2 42 eqger ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) → ( 𝐺 ~QG 𝑌 ) Er 𝑋 )
44 41 43 syl ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑆𝐽 ) ∧ 𝑦𝑋 ) ∧ 𝑧𝑆 ) → ( 𝐺 ~QG 𝑌 ) Er 𝑋 )
45 simplr ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑆𝐽 ) ∧ 𝑦𝑋 ) ∧ 𝑧𝑆 ) → 𝑦𝑋 )
46 44 45 erth ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑆𝐽 ) ∧ 𝑦𝑋 ) ∧ 𝑧𝑆 ) → ( 𝑦 ( 𝐺 ~QG 𝑌 ) 𝑧 ↔ [ 𝑦 ] ( 𝐺 ~QG 𝑌 ) = [ 𝑧 ] ( 𝐺 ~QG 𝑌 ) ) )
47 11 ad2antrr ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑆𝐽 ) ∧ 𝑦𝑋 ) ∧ 𝑧𝑆 ) → 𝐺 ∈ TopGrp )
48 2 subgss ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) → 𝑌𝑋 )
49 41 48 syl ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑆𝐽 ) ∧ 𝑦𝑋 ) ∧ 𝑧𝑆 ) → 𝑌𝑋 )
50 eqid ( invg𝐺 ) = ( invg𝐺 )
51 eqid ( +g𝐺 ) = ( +g𝐺 )
52 2 50 51 42 eqgval ( ( 𝐺 ∈ TopGrp ∧ 𝑌𝑋 ) → ( 𝑦 ( 𝐺 ~QG 𝑌 ) 𝑧 ↔ ( 𝑦𝑋𝑧𝑋 ∧ ( ( ( invg𝐺 ) ‘ 𝑦 ) ( +g𝐺 ) 𝑧 ) ∈ 𝑌 ) ) )
53 47 49 52 syl2anc ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑆𝐽 ) ∧ 𝑦𝑋 ) ∧ 𝑧𝑆 ) → ( 𝑦 ( 𝐺 ~QG 𝑌 ) 𝑧 ↔ ( 𝑦𝑋𝑧𝑋 ∧ ( ( ( invg𝐺 ) ‘ 𝑦 ) ( +g𝐺 ) 𝑧 ) ∈ 𝑌 ) ) )
54 38 46 53 3bitr2d ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑆𝐽 ) ∧ 𝑦𝑋 ) ∧ 𝑧𝑆 ) → ( ( 𝐹𝑧 ) = [ 𝑦 ] ( 𝐺 ~QG 𝑌 ) ↔ ( 𝑦𝑋𝑧𝑋 ∧ ( ( ( invg𝐺 ) ‘ 𝑦 ) ( +g𝐺 ) 𝑧 ) ∈ 𝑌 ) ) )
55 eqid ( oppg𝐺 ) = ( oppg𝐺 )
56 eqid ( +g ‘ ( oppg𝐺 ) ) = ( +g ‘ ( oppg𝐺 ) )
57 51 55 56 oppgplus ( ( ( ( invg𝐺 ) ‘ 𝑦 ) ( +g𝐺 ) 𝑧 ) ( +g ‘ ( oppg𝐺 ) ) 𝑎 ) = ( 𝑎 ( +g𝐺 ) ( ( ( invg𝐺 ) ‘ 𝑦 ) ( +g𝐺 ) 𝑧 ) )
58 57 mpteq2i ( 𝑎𝑋 ↦ ( ( ( ( invg𝐺 ) ‘ 𝑦 ) ( +g𝐺 ) 𝑧 ) ( +g ‘ ( oppg𝐺 ) ) 𝑎 ) ) = ( 𝑎𝑋 ↦ ( 𝑎 ( +g𝐺 ) ( ( ( invg𝐺 ) ‘ 𝑦 ) ( +g𝐺 ) 𝑧 ) ) )
59 47 adantr ( ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑆𝐽 ) ∧ 𝑦𝑋 ) ∧ 𝑧𝑆 ) ∧ ( ( ( invg𝐺 ) ‘ 𝑦 ) ( +g𝐺 ) 𝑧 ) ∈ 𝑌 ) → 𝐺 ∈ TopGrp )
60 55 oppgtgp ( 𝐺 ∈ TopGrp → ( oppg𝐺 ) ∈ TopGrp )
61 59 60 syl ( ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑆𝐽 ) ∧ 𝑦𝑋 ) ∧ 𝑧𝑆 ) ∧ ( ( ( invg𝐺 ) ‘ 𝑦 ) ( +g𝐺 ) 𝑧 ) ∈ 𝑌 ) → ( oppg𝐺 ) ∈ TopGrp )
62 49 sselda ( ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑆𝐽 ) ∧ 𝑦𝑋 ) ∧ 𝑧𝑆 ) ∧ ( ( ( invg𝐺 ) ‘ 𝑦 ) ( +g𝐺 ) 𝑧 ) ∈ 𝑌 ) → ( ( ( invg𝐺 ) ‘ 𝑦 ) ( +g𝐺 ) 𝑧 ) ∈ 𝑋 )
63 eqid ( 𝑎𝑋 ↦ ( ( ( ( invg𝐺 ) ‘ 𝑦 ) ( +g𝐺 ) 𝑧 ) ( +g ‘ ( oppg𝐺 ) ) 𝑎 ) ) = ( 𝑎𝑋 ↦ ( ( ( ( invg𝐺 ) ‘ 𝑦 ) ( +g𝐺 ) 𝑧 ) ( +g ‘ ( oppg𝐺 ) ) 𝑎 ) )
64 55 2 oppgbas 𝑋 = ( Base ‘ ( oppg𝐺 ) )
65 55 3 oppgtopn 𝐽 = ( TopOpen ‘ ( oppg𝐺 ) )
66 63 64 56 65 tgplacthmeo ( ( ( oppg𝐺 ) ∈ TopGrp ∧ ( ( ( invg𝐺 ) ‘ 𝑦 ) ( +g𝐺 ) 𝑧 ) ∈ 𝑋 ) → ( 𝑎𝑋 ↦ ( ( ( ( invg𝐺 ) ‘ 𝑦 ) ( +g𝐺 ) 𝑧 ) ( +g ‘ ( oppg𝐺 ) ) 𝑎 ) ) ∈ ( 𝐽 Homeo 𝐽 ) )
67 61 62 66 syl2anc ( ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑆𝐽 ) ∧ 𝑦𝑋 ) ∧ 𝑧𝑆 ) ∧ ( ( ( invg𝐺 ) ‘ 𝑦 ) ( +g𝐺 ) 𝑧 ) ∈ 𝑌 ) → ( 𝑎𝑋 ↦ ( ( ( ( invg𝐺 ) ‘ 𝑦 ) ( +g𝐺 ) 𝑧 ) ( +g ‘ ( oppg𝐺 ) ) 𝑎 ) ) ∈ ( 𝐽 Homeo 𝐽 ) )
68 58 67 eqeltrrid ( ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑆𝐽 ) ∧ 𝑦𝑋 ) ∧ 𝑧𝑆 ) ∧ ( ( ( invg𝐺 ) ‘ 𝑦 ) ( +g𝐺 ) 𝑧 ) ∈ 𝑌 ) → ( 𝑎𝑋 ↦ ( 𝑎 ( +g𝐺 ) ( ( ( invg𝐺 ) ‘ 𝑦 ) ( +g𝐺 ) 𝑧 ) ) ) ∈ ( 𝐽 Homeo 𝐽 ) )
69 hmeocn ( ( 𝑎𝑋 ↦ ( 𝑎 ( +g𝐺 ) ( ( ( invg𝐺 ) ‘ 𝑦 ) ( +g𝐺 ) 𝑧 ) ) ) ∈ ( 𝐽 Homeo 𝐽 ) → ( 𝑎𝑋 ↦ ( 𝑎 ( +g𝐺 ) ( ( ( invg𝐺 ) ‘ 𝑦 ) ( +g𝐺 ) 𝑧 ) ) ) ∈ ( 𝐽 Cn 𝐽 ) )
70 68 69 syl ( ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑆𝐽 ) ∧ 𝑦𝑋 ) ∧ 𝑧𝑆 ) ∧ ( ( ( invg𝐺 ) ‘ 𝑦 ) ( +g𝐺 ) 𝑧 ) ∈ 𝑌 ) → ( 𝑎𝑋 ↦ ( 𝑎 ( +g𝐺 ) ( ( ( invg𝐺 ) ‘ 𝑦 ) ( +g𝐺 ) 𝑧 ) ) ) ∈ ( 𝐽 Cn 𝐽 ) )
71 26 ad3antrrr ( ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑆𝐽 ) ∧ 𝑦𝑋 ) ∧ 𝑧𝑆 ) ∧ ( ( ( invg𝐺 ) ‘ 𝑦 ) ( +g𝐺 ) 𝑧 ) ∈ 𝑌 ) → 𝑆𝐽 )
72 cnima ( ( ( 𝑎𝑋 ↦ ( 𝑎 ( +g𝐺 ) ( ( ( invg𝐺 ) ‘ 𝑦 ) ( +g𝐺 ) 𝑧 ) ) ) ∈ ( 𝐽 Cn 𝐽 ) ∧ 𝑆𝐽 ) → ( ( 𝑎𝑋 ↦ ( 𝑎 ( +g𝐺 ) ( ( ( invg𝐺 ) ‘ 𝑦 ) ( +g𝐺 ) 𝑧 ) ) ) “ 𝑆 ) ∈ 𝐽 )
73 70 71 72 syl2anc ( ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑆𝐽 ) ∧ 𝑦𝑋 ) ∧ 𝑧𝑆 ) ∧ ( ( ( invg𝐺 ) ‘ 𝑦 ) ( +g𝐺 ) 𝑧 ) ∈ 𝑌 ) → ( ( 𝑎𝑋 ↦ ( 𝑎 ( +g𝐺 ) ( ( ( invg𝐺 ) ‘ 𝑦 ) ( +g𝐺 ) 𝑧 ) ) ) “ 𝑆 ) ∈ 𝐽 )
74 45 adantr ( ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑆𝐽 ) ∧ 𝑦𝑋 ) ∧ 𝑧𝑆 ) ∧ ( ( ( invg𝐺 ) ‘ 𝑦 ) ( +g𝐺 ) 𝑧 ) ∈ 𝑌 ) → 𝑦𝑋 )
75 tgpgrp ( 𝐺 ∈ TopGrp → 𝐺 ∈ Grp )
76 59 75 syl ( ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑆𝐽 ) ∧ 𝑦𝑋 ) ∧ 𝑧𝑆 ) ∧ ( ( ( invg𝐺 ) ‘ 𝑦 ) ( +g𝐺 ) 𝑧 ) ∈ 𝑌 ) → 𝐺 ∈ Grp )
77 eqid ( 0g𝐺 ) = ( 0g𝐺 )
78 2 51 77 50 grprinv ( ( 𝐺 ∈ Grp ∧ 𝑦𝑋 ) → ( 𝑦 ( +g𝐺 ) ( ( invg𝐺 ) ‘ 𝑦 ) ) = ( 0g𝐺 ) )
79 76 74 78 syl2anc ( ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑆𝐽 ) ∧ 𝑦𝑋 ) ∧ 𝑧𝑆 ) ∧ ( ( ( invg𝐺 ) ‘ 𝑦 ) ( +g𝐺 ) 𝑧 ) ∈ 𝑌 ) → ( 𝑦 ( +g𝐺 ) ( ( invg𝐺 ) ‘ 𝑦 ) ) = ( 0g𝐺 ) )
80 79 oveq1d ( ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑆𝐽 ) ∧ 𝑦𝑋 ) ∧ 𝑧𝑆 ) ∧ ( ( ( invg𝐺 ) ‘ 𝑦 ) ( +g𝐺 ) 𝑧 ) ∈ 𝑌 ) → ( ( 𝑦 ( +g𝐺 ) ( ( invg𝐺 ) ‘ 𝑦 ) ) ( +g𝐺 ) 𝑧 ) = ( ( 0g𝐺 ) ( +g𝐺 ) 𝑧 ) )
81 2 50 grpinvcl ( ( 𝐺 ∈ Grp ∧ 𝑦𝑋 ) → ( ( invg𝐺 ) ‘ 𝑦 ) ∈ 𝑋 )
82 76 74 81 syl2anc ( ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑆𝐽 ) ∧ 𝑦𝑋 ) ∧ 𝑧𝑆 ) ∧ ( ( ( invg𝐺 ) ‘ 𝑦 ) ( +g𝐺 ) 𝑧 ) ∈ 𝑌 ) → ( ( invg𝐺 ) ‘ 𝑦 ) ∈ 𝑋 )
83 30 adantr ( ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑆𝐽 ) ∧ 𝑦𝑋 ) ∧ 𝑧𝑆 ) ∧ ( ( ( invg𝐺 ) ‘ 𝑦 ) ( +g𝐺 ) 𝑧 ) ∈ 𝑌 ) → 𝑧𝑋 )
84 2 51 grpass ( ( 𝐺 ∈ Grp ∧ ( 𝑦𝑋 ∧ ( ( invg𝐺 ) ‘ 𝑦 ) ∈ 𝑋𝑧𝑋 ) ) → ( ( 𝑦 ( +g𝐺 ) ( ( invg𝐺 ) ‘ 𝑦 ) ) ( +g𝐺 ) 𝑧 ) = ( 𝑦 ( +g𝐺 ) ( ( ( invg𝐺 ) ‘ 𝑦 ) ( +g𝐺 ) 𝑧 ) ) )
85 76 74 82 83 84 syl13anc ( ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑆𝐽 ) ∧ 𝑦𝑋 ) ∧ 𝑧𝑆 ) ∧ ( ( ( invg𝐺 ) ‘ 𝑦 ) ( +g𝐺 ) 𝑧 ) ∈ 𝑌 ) → ( ( 𝑦 ( +g𝐺 ) ( ( invg𝐺 ) ‘ 𝑦 ) ) ( +g𝐺 ) 𝑧 ) = ( 𝑦 ( +g𝐺 ) ( ( ( invg𝐺 ) ‘ 𝑦 ) ( +g𝐺 ) 𝑧 ) ) )
86 2 51 77 grplid ( ( 𝐺 ∈ Grp ∧ 𝑧𝑋 ) → ( ( 0g𝐺 ) ( +g𝐺 ) 𝑧 ) = 𝑧 )
87 76 83 86 syl2anc ( ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑆𝐽 ) ∧ 𝑦𝑋 ) ∧ 𝑧𝑆 ) ∧ ( ( ( invg𝐺 ) ‘ 𝑦 ) ( +g𝐺 ) 𝑧 ) ∈ 𝑌 ) → ( ( 0g𝐺 ) ( +g𝐺 ) 𝑧 ) = 𝑧 )
88 80 85 87 3eqtr3d ( ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑆𝐽 ) ∧ 𝑦𝑋 ) ∧ 𝑧𝑆 ) ∧ ( ( ( invg𝐺 ) ‘ 𝑦 ) ( +g𝐺 ) 𝑧 ) ∈ 𝑌 ) → ( 𝑦 ( +g𝐺 ) ( ( ( invg𝐺 ) ‘ 𝑦 ) ( +g𝐺 ) 𝑧 ) ) = 𝑧 )
89 simplr ( ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑆𝐽 ) ∧ 𝑦𝑋 ) ∧ 𝑧𝑆 ) ∧ ( ( ( invg𝐺 ) ‘ 𝑦 ) ( +g𝐺 ) 𝑧 ) ∈ 𝑌 ) → 𝑧𝑆 )
90 88 89 eqeltrd ( ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑆𝐽 ) ∧ 𝑦𝑋 ) ∧ 𝑧𝑆 ) ∧ ( ( ( invg𝐺 ) ‘ 𝑦 ) ( +g𝐺 ) 𝑧 ) ∈ 𝑌 ) → ( 𝑦 ( +g𝐺 ) ( ( ( invg𝐺 ) ‘ 𝑦 ) ( +g𝐺 ) 𝑧 ) ) ∈ 𝑆 )
91 oveq1 ( 𝑎 = 𝑦 → ( 𝑎 ( +g𝐺 ) ( ( ( invg𝐺 ) ‘ 𝑦 ) ( +g𝐺 ) 𝑧 ) ) = ( 𝑦 ( +g𝐺 ) ( ( ( invg𝐺 ) ‘ 𝑦 ) ( +g𝐺 ) 𝑧 ) ) )
92 91 eleq1d ( 𝑎 = 𝑦 → ( ( 𝑎 ( +g𝐺 ) ( ( ( invg𝐺 ) ‘ 𝑦 ) ( +g𝐺 ) 𝑧 ) ) ∈ 𝑆 ↔ ( 𝑦 ( +g𝐺 ) ( ( ( invg𝐺 ) ‘ 𝑦 ) ( +g𝐺 ) 𝑧 ) ) ∈ 𝑆 ) )
93 eqid ( 𝑎𝑋 ↦ ( 𝑎 ( +g𝐺 ) ( ( ( invg𝐺 ) ‘ 𝑦 ) ( +g𝐺 ) 𝑧 ) ) ) = ( 𝑎𝑋 ↦ ( 𝑎 ( +g𝐺 ) ( ( ( invg𝐺 ) ‘ 𝑦 ) ( +g𝐺 ) 𝑧 ) ) )
94 93 mptpreima ( ( 𝑎𝑋 ↦ ( 𝑎 ( +g𝐺 ) ( ( ( invg𝐺 ) ‘ 𝑦 ) ( +g𝐺 ) 𝑧 ) ) ) “ 𝑆 ) = { 𝑎𝑋 ∣ ( 𝑎 ( +g𝐺 ) ( ( ( invg𝐺 ) ‘ 𝑦 ) ( +g𝐺 ) 𝑧 ) ) ∈ 𝑆 }
95 92 94 elrab2 ( 𝑦 ∈ ( ( 𝑎𝑋 ↦ ( 𝑎 ( +g𝐺 ) ( ( ( invg𝐺 ) ‘ 𝑦 ) ( +g𝐺 ) 𝑧 ) ) ) “ 𝑆 ) ↔ ( 𝑦𝑋 ∧ ( 𝑦 ( +g𝐺 ) ( ( ( invg𝐺 ) ‘ 𝑦 ) ( +g𝐺 ) 𝑧 ) ) ∈ 𝑆 ) )
96 74 90 95 sylanbrc ( ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑆𝐽 ) ∧ 𝑦𝑋 ) ∧ 𝑧𝑆 ) ∧ ( ( ( invg𝐺 ) ‘ 𝑦 ) ( +g𝐺 ) 𝑧 ) ∈ 𝑌 ) → 𝑦 ∈ ( ( 𝑎𝑋 ↦ ( 𝑎 ( +g𝐺 ) ( ( ( invg𝐺 ) ‘ 𝑦 ) ( +g𝐺 ) 𝑧 ) ) ) “ 𝑆 ) )
97 ecexg ( ( 𝐺 ~QG 𝑌 ) ∈ V → [ 𝑥 ] ( 𝐺 ~QG 𝑌 ) ∈ V )
98 9 97 ax-mp [ 𝑥 ] ( 𝐺 ~QG 𝑌 ) ∈ V
99 98 5 fnmpti 𝐹 Fn 𝑋
100 29 ad3antrrr ( ( ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑆𝐽 ) ∧ 𝑦𝑋 ) ∧ 𝑧𝑆 ) ∧ ( ( ( invg𝐺 ) ‘ 𝑦 ) ( +g𝐺 ) 𝑧 ) ∈ 𝑌 ) ∧ 𝑎𝑋 ) → 𝑆𝑋 )
101 fnfvima ( ( 𝐹 Fn 𝑋𝑆𝑋 ∧ ( 𝑎 ( +g𝐺 ) ( ( ( invg𝐺 ) ‘ 𝑦 ) ( +g𝐺 ) 𝑧 ) ) ∈ 𝑆 ) → ( 𝐹 ‘ ( 𝑎 ( +g𝐺 ) ( ( ( invg𝐺 ) ‘ 𝑦 ) ( +g𝐺 ) 𝑧 ) ) ) ∈ ( 𝐹𝑆 ) )
102 101 3expia ( ( 𝐹 Fn 𝑋𝑆𝑋 ) → ( ( 𝑎 ( +g𝐺 ) ( ( ( invg𝐺 ) ‘ 𝑦 ) ( +g𝐺 ) 𝑧 ) ) ∈ 𝑆 → ( 𝐹 ‘ ( 𝑎 ( +g𝐺 ) ( ( ( invg𝐺 ) ‘ 𝑦 ) ( +g𝐺 ) 𝑧 ) ) ) ∈ ( 𝐹𝑆 ) ) )
103 99 100 102 sylancr ( ( ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑆𝐽 ) ∧ 𝑦𝑋 ) ∧ 𝑧𝑆 ) ∧ ( ( ( invg𝐺 ) ‘ 𝑦 ) ( +g𝐺 ) 𝑧 ) ∈ 𝑌 ) ∧ 𝑎𝑋 ) → ( ( 𝑎 ( +g𝐺 ) ( ( ( invg𝐺 ) ‘ 𝑦 ) ( +g𝐺 ) 𝑧 ) ) ∈ 𝑆 → ( 𝐹 ‘ ( 𝑎 ( +g𝐺 ) ( ( ( invg𝐺 ) ‘ 𝑦 ) ( +g𝐺 ) 𝑧 ) ) ) ∈ ( 𝐹𝑆 ) ) )
104 76 adantr ( ( ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑆𝐽 ) ∧ 𝑦𝑋 ) ∧ 𝑧𝑆 ) ∧ ( ( ( invg𝐺 ) ‘ 𝑦 ) ( +g𝐺 ) 𝑧 ) ∈ 𝑌 ) ∧ 𝑎𝑋 ) → 𝐺 ∈ Grp )
105 simpr ( ( ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑆𝐽 ) ∧ 𝑦𝑋 ) ∧ 𝑧𝑆 ) ∧ ( ( ( invg𝐺 ) ‘ 𝑦 ) ( +g𝐺 ) 𝑧 ) ∈ 𝑌 ) ∧ 𝑎𝑋 ) → 𝑎𝑋 )
106 62 adantr ( ( ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑆𝐽 ) ∧ 𝑦𝑋 ) ∧ 𝑧𝑆 ) ∧ ( ( ( invg𝐺 ) ‘ 𝑦 ) ( +g𝐺 ) 𝑧 ) ∈ 𝑌 ) ∧ 𝑎𝑋 ) → ( ( ( invg𝐺 ) ‘ 𝑦 ) ( +g𝐺 ) 𝑧 ) ∈ 𝑋 )
107 2 51 grpcl ( ( 𝐺 ∈ Grp ∧ 𝑎𝑋 ∧ ( ( ( invg𝐺 ) ‘ 𝑦 ) ( +g𝐺 ) 𝑧 ) ∈ 𝑋 ) → ( 𝑎 ( +g𝐺 ) ( ( ( invg𝐺 ) ‘ 𝑦 ) ( +g𝐺 ) 𝑧 ) ) ∈ 𝑋 )
108 104 105 106 107 syl3anc ( ( ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑆𝐽 ) ∧ 𝑦𝑋 ) ∧ 𝑧𝑆 ) ∧ ( ( ( invg𝐺 ) ‘ 𝑦 ) ( +g𝐺 ) 𝑧 ) ∈ 𝑌 ) ∧ 𝑎𝑋 ) → ( 𝑎 ( +g𝐺 ) ( ( ( invg𝐺 ) ‘ 𝑦 ) ( +g𝐺 ) 𝑧 ) ) ∈ 𝑋 )
109 eceq1 ( 𝑥 = ( 𝑎 ( +g𝐺 ) ( ( ( invg𝐺 ) ‘ 𝑦 ) ( +g𝐺 ) 𝑧 ) ) → [ 𝑥 ] ( 𝐺 ~QG 𝑌 ) = [ ( 𝑎 ( +g𝐺 ) ( ( ( invg𝐺 ) ‘ 𝑦 ) ( +g𝐺 ) 𝑧 ) ) ] ( 𝐺 ~QG 𝑌 ) )
110 109 5 98 fvmpt3i ( ( 𝑎 ( +g𝐺 ) ( ( ( invg𝐺 ) ‘ 𝑦 ) ( +g𝐺 ) 𝑧 ) ) ∈ 𝑋 → ( 𝐹 ‘ ( 𝑎 ( +g𝐺 ) ( ( ( invg𝐺 ) ‘ 𝑦 ) ( +g𝐺 ) 𝑧 ) ) ) = [ ( 𝑎 ( +g𝐺 ) ( ( ( invg𝐺 ) ‘ 𝑦 ) ( +g𝐺 ) 𝑧 ) ) ] ( 𝐺 ~QG 𝑌 ) )
111 108 110 syl ( ( ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑆𝐽 ) ∧ 𝑦𝑋 ) ∧ 𝑧𝑆 ) ∧ ( ( ( invg𝐺 ) ‘ 𝑦 ) ( +g𝐺 ) 𝑧 ) ∈ 𝑌 ) ∧ 𝑎𝑋 ) → ( 𝐹 ‘ ( 𝑎 ( +g𝐺 ) ( ( ( invg𝐺 ) ‘ 𝑦 ) ( +g𝐺 ) 𝑧 ) ) ) = [ ( 𝑎 ( +g𝐺 ) ( ( ( invg𝐺 ) ‘ 𝑦 ) ( +g𝐺 ) 𝑧 ) ) ] ( 𝐺 ~QG 𝑌 ) )
112 44 ad2antrr ( ( ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑆𝐽 ) ∧ 𝑦𝑋 ) ∧ 𝑧𝑆 ) ∧ ( ( ( invg𝐺 ) ‘ 𝑦 ) ( +g𝐺 ) 𝑧 ) ∈ 𝑌 ) ∧ 𝑎𝑋 ) → ( 𝐺 ~QG 𝑌 ) Er 𝑋 )
113 2 51 77 50 grplinv ( ( 𝐺 ∈ Grp ∧ 𝑎𝑋 ) → ( ( ( invg𝐺 ) ‘ 𝑎 ) ( +g𝐺 ) 𝑎 ) = ( 0g𝐺 ) )
114 104 105 113 syl2anc ( ( ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑆𝐽 ) ∧ 𝑦𝑋 ) ∧ 𝑧𝑆 ) ∧ ( ( ( invg𝐺 ) ‘ 𝑦 ) ( +g𝐺 ) 𝑧 ) ∈ 𝑌 ) ∧ 𝑎𝑋 ) → ( ( ( invg𝐺 ) ‘ 𝑎 ) ( +g𝐺 ) 𝑎 ) = ( 0g𝐺 ) )
115 114 oveq1d ( ( ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑆𝐽 ) ∧ 𝑦𝑋 ) ∧ 𝑧𝑆 ) ∧ ( ( ( invg𝐺 ) ‘ 𝑦 ) ( +g𝐺 ) 𝑧 ) ∈ 𝑌 ) ∧ 𝑎𝑋 ) → ( ( ( ( invg𝐺 ) ‘ 𝑎 ) ( +g𝐺 ) 𝑎 ) ( +g𝐺 ) ( ( ( invg𝐺 ) ‘ 𝑦 ) ( +g𝐺 ) 𝑧 ) ) = ( ( 0g𝐺 ) ( +g𝐺 ) ( ( ( invg𝐺 ) ‘ 𝑦 ) ( +g𝐺 ) 𝑧 ) ) )
116 2 50 grpinvcl ( ( 𝐺 ∈ Grp ∧ 𝑎𝑋 ) → ( ( invg𝐺 ) ‘ 𝑎 ) ∈ 𝑋 )
117 104 105 116 syl2anc ( ( ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑆𝐽 ) ∧ 𝑦𝑋 ) ∧ 𝑧𝑆 ) ∧ ( ( ( invg𝐺 ) ‘ 𝑦 ) ( +g𝐺 ) 𝑧 ) ∈ 𝑌 ) ∧ 𝑎𝑋 ) → ( ( invg𝐺 ) ‘ 𝑎 ) ∈ 𝑋 )
118 2 51 grpass ( ( 𝐺 ∈ Grp ∧ ( ( ( invg𝐺 ) ‘ 𝑎 ) ∈ 𝑋𝑎𝑋 ∧ ( ( ( invg𝐺 ) ‘ 𝑦 ) ( +g𝐺 ) 𝑧 ) ∈ 𝑋 ) ) → ( ( ( ( invg𝐺 ) ‘ 𝑎 ) ( +g𝐺 ) 𝑎 ) ( +g𝐺 ) ( ( ( invg𝐺 ) ‘ 𝑦 ) ( +g𝐺 ) 𝑧 ) ) = ( ( ( invg𝐺 ) ‘ 𝑎 ) ( +g𝐺 ) ( 𝑎 ( +g𝐺 ) ( ( ( invg𝐺 ) ‘ 𝑦 ) ( +g𝐺 ) 𝑧 ) ) ) )
119 104 117 105 106 118 syl13anc ( ( ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑆𝐽 ) ∧ 𝑦𝑋 ) ∧ 𝑧𝑆 ) ∧ ( ( ( invg𝐺 ) ‘ 𝑦 ) ( +g𝐺 ) 𝑧 ) ∈ 𝑌 ) ∧ 𝑎𝑋 ) → ( ( ( ( invg𝐺 ) ‘ 𝑎 ) ( +g𝐺 ) 𝑎 ) ( +g𝐺 ) ( ( ( invg𝐺 ) ‘ 𝑦 ) ( +g𝐺 ) 𝑧 ) ) = ( ( ( invg𝐺 ) ‘ 𝑎 ) ( +g𝐺 ) ( 𝑎 ( +g𝐺 ) ( ( ( invg𝐺 ) ‘ 𝑦 ) ( +g𝐺 ) 𝑧 ) ) ) )
120 2 51 77 grplid ( ( 𝐺 ∈ Grp ∧ ( ( ( invg𝐺 ) ‘ 𝑦 ) ( +g𝐺 ) 𝑧 ) ∈ 𝑋 ) → ( ( 0g𝐺 ) ( +g𝐺 ) ( ( ( invg𝐺 ) ‘ 𝑦 ) ( +g𝐺 ) 𝑧 ) ) = ( ( ( invg𝐺 ) ‘ 𝑦 ) ( +g𝐺 ) 𝑧 ) )
121 104 106 120 syl2anc ( ( ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑆𝐽 ) ∧ 𝑦𝑋 ) ∧ 𝑧𝑆 ) ∧ ( ( ( invg𝐺 ) ‘ 𝑦 ) ( +g𝐺 ) 𝑧 ) ∈ 𝑌 ) ∧ 𝑎𝑋 ) → ( ( 0g𝐺 ) ( +g𝐺 ) ( ( ( invg𝐺 ) ‘ 𝑦 ) ( +g𝐺 ) 𝑧 ) ) = ( ( ( invg𝐺 ) ‘ 𝑦 ) ( +g𝐺 ) 𝑧 ) )
122 115 119 121 3eqtr3d ( ( ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑆𝐽 ) ∧ 𝑦𝑋 ) ∧ 𝑧𝑆 ) ∧ ( ( ( invg𝐺 ) ‘ 𝑦 ) ( +g𝐺 ) 𝑧 ) ∈ 𝑌 ) ∧ 𝑎𝑋 ) → ( ( ( invg𝐺 ) ‘ 𝑎 ) ( +g𝐺 ) ( 𝑎 ( +g𝐺 ) ( ( ( invg𝐺 ) ‘ 𝑦 ) ( +g𝐺 ) 𝑧 ) ) ) = ( ( ( invg𝐺 ) ‘ 𝑦 ) ( +g𝐺 ) 𝑧 ) )
123 simplr ( ( ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑆𝐽 ) ∧ 𝑦𝑋 ) ∧ 𝑧𝑆 ) ∧ ( ( ( invg𝐺 ) ‘ 𝑦 ) ( +g𝐺 ) 𝑧 ) ∈ 𝑌 ) ∧ 𝑎𝑋 ) → ( ( ( invg𝐺 ) ‘ 𝑦 ) ( +g𝐺 ) 𝑧 ) ∈ 𝑌 )
124 122 123 eqeltrd ( ( ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑆𝐽 ) ∧ 𝑦𝑋 ) ∧ 𝑧𝑆 ) ∧ ( ( ( invg𝐺 ) ‘ 𝑦 ) ( +g𝐺 ) 𝑧 ) ∈ 𝑌 ) ∧ 𝑎𝑋 ) → ( ( ( invg𝐺 ) ‘ 𝑎 ) ( +g𝐺 ) ( 𝑎 ( +g𝐺 ) ( ( ( invg𝐺 ) ‘ 𝑦 ) ( +g𝐺 ) 𝑧 ) ) ) ∈ 𝑌 )
125 49 ad2antrr ( ( ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑆𝐽 ) ∧ 𝑦𝑋 ) ∧ 𝑧𝑆 ) ∧ ( ( ( invg𝐺 ) ‘ 𝑦 ) ( +g𝐺 ) 𝑧 ) ∈ 𝑌 ) ∧ 𝑎𝑋 ) → 𝑌𝑋 )
126 2 50 51 42 eqgval ( ( 𝐺 ∈ Grp ∧ 𝑌𝑋 ) → ( 𝑎 ( 𝐺 ~QG 𝑌 ) ( 𝑎 ( +g𝐺 ) ( ( ( invg𝐺 ) ‘ 𝑦 ) ( +g𝐺 ) 𝑧 ) ) ↔ ( 𝑎𝑋 ∧ ( 𝑎 ( +g𝐺 ) ( ( ( invg𝐺 ) ‘ 𝑦 ) ( +g𝐺 ) 𝑧 ) ) ∈ 𝑋 ∧ ( ( ( invg𝐺 ) ‘ 𝑎 ) ( +g𝐺 ) ( 𝑎 ( +g𝐺 ) ( ( ( invg𝐺 ) ‘ 𝑦 ) ( +g𝐺 ) 𝑧 ) ) ) ∈ 𝑌 ) ) )
127 104 125 126 syl2anc ( ( ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑆𝐽 ) ∧ 𝑦𝑋 ) ∧ 𝑧𝑆 ) ∧ ( ( ( invg𝐺 ) ‘ 𝑦 ) ( +g𝐺 ) 𝑧 ) ∈ 𝑌 ) ∧ 𝑎𝑋 ) → ( 𝑎 ( 𝐺 ~QG 𝑌 ) ( 𝑎 ( +g𝐺 ) ( ( ( invg𝐺 ) ‘ 𝑦 ) ( +g𝐺 ) 𝑧 ) ) ↔ ( 𝑎𝑋 ∧ ( 𝑎 ( +g𝐺 ) ( ( ( invg𝐺 ) ‘ 𝑦 ) ( +g𝐺 ) 𝑧 ) ) ∈ 𝑋 ∧ ( ( ( invg𝐺 ) ‘ 𝑎 ) ( +g𝐺 ) ( 𝑎 ( +g𝐺 ) ( ( ( invg𝐺 ) ‘ 𝑦 ) ( +g𝐺 ) 𝑧 ) ) ) ∈ 𝑌 ) ) )
128 105 108 124 127 mpbir3and ( ( ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑆𝐽 ) ∧ 𝑦𝑋 ) ∧ 𝑧𝑆 ) ∧ ( ( ( invg𝐺 ) ‘ 𝑦 ) ( +g𝐺 ) 𝑧 ) ∈ 𝑌 ) ∧ 𝑎𝑋 ) → 𝑎 ( 𝐺 ~QG 𝑌 ) ( 𝑎 ( +g𝐺 ) ( ( ( invg𝐺 ) ‘ 𝑦 ) ( +g𝐺 ) 𝑧 ) ) )
129 112 128 erthi ( ( ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑆𝐽 ) ∧ 𝑦𝑋 ) ∧ 𝑧𝑆 ) ∧ ( ( ( invg𝐺 ) ‘ 𝑦 ) ( +g𝐺 ) 𝑧 ) ∈ 𝑌 ) ∧ 𝑎𝑋 ) → [ 𝑎 ] ( 𝐺 ~QG 𝑌 ) = [ ( 𝑎 ( +g𝐺 ) ( ( ( invg𝐺 ) ‘ 𝑦 ) ( +g𝐺 ) 𝑧 ) ) ] ( 𝐺 ~QG 𝑌 ) )
130 111 129 eqtr4d ( ( ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑆𝐽 ) ∧ 𝑦𝑋 ) ∧ 𝑧𝑆 ) ∧ ( ( ( invg𝐺 ) ‘ 𝑦 ) ( +g𝐺 ) 𝑧 ) ∈ 𝑌 ) ∧ 𝑎𝑋 ) → ( 𝐹 ‘ ( 𝑎 ( +g𝐺 ) ( ( ( invg𝐺 ) ‘ 𝑦 ) ( +g𝐺 ) 𝑧 ) ) ) = [ 𝑎 ] ( 𝐺 ~QG 𝑌 ) )
131 130 eleq1d ( ( ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑆𝐽 ) ∧ 𝑦𝑋 ) ∧ 𝑧𝑆 ) ∧ ( ( ( invg𝐺 ) ‘ 𝑦 ) ( +g𝐺 ) 𝑧 ) ∈ 𝑌 ) ∧ 𝑎𝑋 ) → ( ( 𝐹 ‘ ( 𝑎 ( +g𝐺 ) ( ( ( invg𝐺 ) ‘ 𝑦 ) ( +g𝐺 ) 𝑧 ) ) ) ∈ ( 𝐹𝑆 ) ↔ [ 𝑎 ] ( 𝐺 ~QG 𝑌 ) ∈ ( 𝐹𝑆 ) ) )
132 103 131 sylibd ( ( ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑆𝐽 ) ∧ 𝑦𝑋 ) ∧ 𝑧𝑆 ) ∧ ( ( ( invg𝐺 ) ‘ 𝑦 ) ( +g𝐺 ) 𝑧 ) ∈ 𝑌 ) ∧ 𝑎𝑋 ) → ( ( 𝑎 ( +g𝐺 ) ( ( ( invg𝐺 ) ‘ 𝑦 ) ( +g𝐺 ) 𝑧 ) ) ∈ 𝑆 → [ 𝑎 ] ( 𝐺 ~QG 𝑌 ) ∈ ( 𝐹𝑆 ) ) )
133 132 ss2rabdv ( ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑆𝐽 ) ∧ 𝑦𝑋 ) ∧ 𝑧𝑆 ) ∧ ( ( ( invg𝐺 ) ‘ 𝑦 ) ( +g𝐺 ) 𝑧 ) ∈ 𝑌 ) → { 𝑎𝑋 ∣ ( 𝑎 ( +g𝐺 ) ( ( ( invg𝐺 ) ‘ 𝑦 ) ( +g𝐺 ) 𝑧 ) ) ∈ 𝑆 } ⊆ { 𝑎𝑋 ∣ [ 𝑎 ] ( 𝐺 ~QG 𝑌 ) ∈ ( 𝐹𝑆 ) } )
134 eceq1 ( 𝑥 = 𝑎 → [ 𝑥 ] ( 𝐺 ~QG 𝑌 ) = [ 𝑎 ] ( 𝐺 ~QG 𝑌 ) )
135 134 cbvmptv ( 𝑥𝑋 ↦ [ 𝑥 ] ( 𝐺 ~QG 𝑌 ) ) = ( 𝑎𝑋 ↦ [ 𝑎 ] ( 𝐺 ~QG 𝑌 ) )
136 5 135 eqtri 𝐹 = ( 𝑎𝑋 ↦ [ 𝑎 ] ( 𝐺 ~QG 𝑌 ) )
137 136 mptpreima ( 𝐹 “ ( 𝐹𝑆 ) ) = { 𝑎𝑋 ∣ [ 𝑎 ] ( 𝐺 ~QG 𝑌 ) ∈ ( 𝐹𝑆 ) }
138 133 94 137 3sstr4g ( ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑆𝐽 ) ∧ 𝑦𝑋 ) ∧ 𝑧𝑆 ) ∧ ( ( ( invg𝐺 ) ‘ 𝑦 ) ( +g𝐺 ) 𝑧 ) ∈ 𝑌 ) → ( ( 𝑎𝑋 ↦ ( 𝑎 ( +g𝐺 ) ( ( ( invg𝐺 ) ‘ 𝑦 ) ( +g𝐺 ) 𝑧 ) ) ) “ 𝑆 ) ⊆ ( 𝐹 “ ( 𝐹𝑆 ) ) )
139 eleq2 ( 𝑢 = ( ( 𝑎𝑋 ↦ ( 𝑎 ( +g𝐺 ) ( ( ( invg𝐺 ) ‘ 𝑦 ) ( +g𝐺 ) 𝑧 ) ) ) “ 𝑆 ) → ( 𝑦𝑢𝑦 ∈ ( ( 𝑎𝑋 ↦ ( 𝑎 ( +g𝐺 ) ( ( ( invg𝐺 ) ‘ 𝑦 ) ( +g𝐺 ) 𝑧 ) ) ) “ 𝑆 ) ) )
140 sseq1 ( 𝑢 = ( ( 𝑎𝑋 ↦ ( 𝑎 ( +g𝐺 ) ( ( ( invg𝐺 ) ‘ 𝑦 ) ( +g𝐺 ) 𝑧 ) ) ) “ 𝑆 ) → ( 𝑢 ⊆ ( 𝐹 “ ( 𝐹𝑆 ) ) ↔ ( ( 𝑎𝑋 ↦ ( 𝑎 ( +g𝐺 ) ( ( ( invg𝐺 ) ‘ 𝑦 ) ( +g𝐺 ) 𝑧 ) ) ) “ 𝑆 ) ⊆ ( 𝐹 “ ( 𝐹𝑆 ) ) ) )
141 139 140 anbi12d ( 𝑢 = ( ( 𝑎𝑋 ↦ ( 𝑎 ( +g𝐺 ) ( ( ( invg𝐺 ) ‘ 𝑦 ) ( +g𝐺 ) 𝑧 ) ) ) “ 𝑆 ) → ( ( 𝑦𝑢𝑢 ⊆ ( 𝐹 “ ( 𝐹𝑆 ) ) ) ↔ ( 𝑦 ∈ ( ( 𝑎𝑋 ↦ ( 𝑎 ( +g𝐺 ) ( ( ( invg𝐺 ) ‘ 𝑦 ) ( +g𝐺 ) 𝑧 ) ) ) “ 𝑆 ) ∧ ( ( 𝑎𝑋 ↦ ( 𝑎 ( +g𝐺 ) ( ( ( invg𝐺 ) ‘ 𝑦 ) ( +g𝐺 ) 𝑧 ) ) ) “ 𝑆 ) ⊆ ( 𝐹 “ ( 𝐹𝑆 ) ) ) ) )
142 141 rspcev ( ( ( ( 𝑎𝑋 ↦ ( 𝑎 ( +g𝐺 ) ( ( ( invg𝐺 ) ‘ 𝑦 ) ( +g𝐺 ) 𝑧 ) ) ) “ 𝑆 ) ∈ 𝐽 ∧ ( 𝑦 ∈ ( ( 𝑎𝑋 ↦ ( 𝑎 ( +g𝐺 ) ( ( ( invg𝐺 ) ‘ 𝑦 ) ( +g𝐺 ) 𝑧 ) ) ) “ 𝑆 ) ∧ ( ( 𝑎𝑋 ↦ ( 𝑎 ( +g𝐺 ) ( ( ( invg𝐺 ) ‘ 𝑦 ) ( +g𝐺 ) 𝑧 ) ) ) “ 𝑆 ) ⊆ ( 𝐹 “ ( 𝐹𝑆 ) ) ) ) → ∃ 𝑢𝐽 ( 𝑦𝑢𝑢 ⊆ ( 𝐹 “ ( 𝐹𝑆 ) ) ) )
143 73 96 138 142 syl12anc ( ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑆𝐽 ) ∧ 𝑦𝑋 ) ∧ 𝑧𝑆 ) ∧ ( ( ( invg𝐺 ) ‘ 𝑦 ) ( +g𝐺 ) 𝑧 ) ∈ 𝑌 ) → ∃ 𝑢𝐽 ( 𝑦𝑢𝑢 ⊆ ( 𝐹 “ ( 𝐹𝑆 ) ) ) )
144 143 3ad2antr3 ( ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑆𝐽 ) ∧ 𝑦𝑋 ) ∧ 𝑧𝑆 ) ∧ ( 𝑦𝑋𝑧𝑋 ∧ ( ( ( invg𝐺 ) ‘ 𝑦 ) ( +g𝐺 ) 𝑧 ) ∈ 𝑌 ) ) → ∃ 𝑢𝐽 ( 𝑦𝑢𝑢 ⊆ ( 𝐹 “ ( 𝐹𝑆 ) ) ) )
145 144 ex ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑆𝐽 ) ∧ 𝑦𝑋 ) ∧ 𝑧𝑆 ) → ( ( 𝑦𝑋𝑧𝑋 ∧ ( ( ( invg𝐺 ) ‘ 𝑦 ) ( +g𝐺 ) 𝑧 ) ∈ 𝑌 ) → ∃ 𝑢𝐽 ( 𝑦𝑢𝑢 ⊆ ( 𝐹 “ ( 𝐹𝑆 ) ) ) ) )
146 54 145 sylbid ( ( ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑆𝐽 ) ∧ 𝑦𝑋 ) ∧ 𝑧𝑆 ) → ( ( 𝐹𝑧 ) = [ 𝑦 ] ( 𝐺 ~QG 𝑌 ) → ∃ 𝑢𝐽 ( 𝑦𝑢𝑢 ⊆ ( 𝐹 “ ( 𝐹𝑆 ) ) ) ) )
147 146 rexlimdva ( ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑆𝐽 ) ∧ 𝑦𝑋 ) → ( ∃ 𝑧𝑆 ( 𝐹𝑧 ) = [ 𝑦 ] ( 𝐺 ~QG 𝑌 ) → ∃ 𝑢𝐽 ( 𝑦𝑢𝑢 ⊆ ( 𝐹 “ ( 𝐹𝑆 ) ) ) ) )
148 23 147 syl5 ( ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑆𝐽 ) ∧ 𝑦𝑋 ) → ( [ 𝑦 ] ( 𝐺 ~QG 𝑌 ) ∈ ( 𝐹𝑆 ) → ∃ 𝑢𝐽 ( 𝑦𝑢𝑢 ⊆ ( 𝐹 “ ( 𝐹𝑆 ) ) ) ) )
149 148 expimpd ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑆𝐽 ) → ( ( 𝑦𝑋 ∧ [ 𝑦 ] ( 𝐺 ~QG 𝑌 ) ∈ ( 𝐹𝑆 ) ) → ∃ 𝑢𝐽 ( 𝑦𝑢𝑢 ⊆ ( 𝐹 “ ( 𝐹𝑆 ) ) ) ) )
150 20 149 syl5bi ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑆𝐽 ) → ( 𝑦 ∈ ( 𝐹 “ ( 𝐹𝑆 ) ) → ∃ 𝑢𝐽 ( 𝑦𝑢𝑢 ⊆ ( 𝐹 “ ( 𝐹𝑆 ) ) ) ) )
151 150 ralrimiv ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑆𝐽 ) → ∀ 𝑦 ∈ ( 𝐹 “ ( 𝐹𝑆 ) ) ∃ 𝑢𝐽 ( 𝑦𝑢𝑢 ⊆ ( 𝐹 “ ( 𝐹𝑆 ) ) ) )
152 topontop ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝐽 ∈ Top )
153 eltop2 ( 𝐽 ∈ Top → ( ( 𝐹 “ ( 𝐹𝑆 ) ) ∈ 𝐽 ↔ ∀ 𝑦 ∈ ( 𝐹 “ ( 𝐹𝑆 ) ) ∃ 𝑢𝐽 ( 𝑦𝑢𝑢 ⊆ ( 𝐹 “ ( 𝐹𝑆 ) ) ) ) )
154 25 152 153 3syl ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑆𝐽 ) → ( ( 𝐹 “ ( 𝐹𝑆 ) ) ∈ 𝐽 ↔ ∀ 𝑦 ∈ ( 𝐹 “ ( 𝐹𝑆 ) ) ∃ 𝑢𝐽 ( 𝑦𝑢𝑢 ⊆ ( 𝐹 “ ( 𝐹𝑆 ) ) ) ) )
155 151 154 mpbird ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑆𝐽 ) → ( 𝐹 “ ( 𝐹𝑆 ) ) ∈ 𝐽 )
156 elqtop3 ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 : 𝑋onto→ ( 𝑋 / ( 𝐺 ~QG 𝑌 ) ) ) → ( ( 𝐹𝑆 ) ∈ ( 𝐽 qTop 𝐹 ) ↔ ( ( 𝐹𝑆 ) ⊆ ( 𝑋 / ( 𝐺 ~QG 𝑌 ) ) ∧ ( 𝐹 “ ( 𝐹𝑆 ) ) ∈ 𝐽 ) ) )
157 25 12 156 syl2anc ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑆𝐽 ) → ( ( 𝐹𝑆 ) ∈ ( 𝐽 qTop 𝐹 ) ↔ ( ( 𝐹𝑆 ) ⊆ ( 𝑋 / ( 𝐺 ~QG 𝑌 ) ) ∧ ( 𝐹 “ ( 𝐹𝑆 ) ) ∈ 𝐽 ) ) )
158 15 155 157 mpbir2and ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑆𝐽 ) → ( 𝐹𝑆 ) ∈ ( 𝐽 qTop 𝐹 ) )
159 7 8 5 10 11 qusval ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑆𝐽 ) → 𝐻 = ( 𝐹s 𝐺 ) )
160 159 8 12 11 3 4 imastopn ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑆𝐽 ) → 𝐾 = ( 𝐽 qTop 𝐹 ) )
161 158 160 eleqtrrd ( ( 𝐺 ∈ TopGrp ∧ 𝑌 ∈ ( NrmSGrp ‘ 𝐺 ) ∧ 𝑆𝐽 ) → ( 𝐹𝑆 ) ∈ 𝐾 )