Metamath Proof Explorer


Theorem qustps

Description: A quotient structure is a topological space. (Contributed by Mario Carneiro, 27-Aug-2015)

Ref Expression
Hypotheses qustps.u ( 𝜑𝑈 = ( 𝑅 /s 𝐸 ) )
qustps.v ( 𝜑𝑉 = ( Base ‘ 𝑅 ) )
qustps.e ( 𝜑𝐸𝑊 )
qustps.r ( 𝜑𝑅 ∈ TopSp )
Assertion qustps ( 𝜑𝑈 ∈ TopSp )

Proof

Step Hyp Ref Expression
1 qustps.u ( 𝜑𝑈 = ( 𝑅 /s 𝐸 ) )
2 qustps.v ( 𝜑𝑉 = ( Base ‘ 𝑅 ) )
3 qustps.e ( 𝜑𝐸𝑊 )
4 qustps.r ( 𝜑𝑅 ∈ TopSp )
5 eqid ( 𝑥𝑉 ↦ [ 𝑥 ] 𝐸 ) = ( 𝑥𝑉 ↦ [ 𝑥 ] 𝐸 )
6 1 2 5 3 4 qusval ( 𝜑𝑈 = ( ( 𝑥𝑉 ↦ [ 𝑥 ] 𝐸 ) “s 𝑅 ) )
7 1 2 5 3 4 quslem ( 𝜑 → ( 𝑥𝑉 ↦ [ 𝑥 ] 𝐸 ) : 𝑉onto→ ( 𝑉 / 𝐸 ) )
8 6 2 7 4 imastps ( 𝜑𝑈 ∈ TopSp )