Description: A quotient structure is a topological space. (Contributed by Mario Carneiro, 27-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | qustps.u | ⊢ ( 𝜑 → 𝑈 = ( 𝑅 /s 𝐸 ) ) | |
| qustps.v | ⊢ ( 𝜑 → 𝑉 = ( Base ‘ 𝑅 ) ) | ||
| qustps.e | ⊢ ( 𝜑 → 𝐸 ∈ 𝑊 ) | ||
| qustps.r | ⊢ ( 𝜑 → 𝑅 ∈ TopSp ) | ||
| Assertion | qustps | ⊢ ( 𝜑 → 𝑈 ∈ TopSp ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qustps.u | ⊢ ( 𝜑 → 𝑈 = ( 𝑅 /s 𝐸 ) ) | |
| 2 | qustps.v | ⊢ ( 𝜑 → 𝑉 = ( Base ‘ 𝑅 ) ) | |
| 3 | qustps.e | ⊢ ( 𝜑 → 𝐸 ∈ 𝑊 ) | |
| 4 | qustps.r | ⊢ ( 𝜑 → 𝑅 ∈ TopSp ) | |
| 5 | eqid | ⊢ ( 𝑥 ∈ 𝑉 ↦ [ 𝑥 ] 𝐸 ) = ( 𝑥 ∈ 𝑉 ↦ [ 𝑥 ] 𝐸 ) | |
| 6 | 1 2 5 3 4 | qusval | ⊢ ( 𝜑 → 𝑈 = ( ( 𝑥 ∈ 𝑉 ↦ [ 𝑥 ] 𝐸 ) “s 𝑅 ) ) |
| 7 | 1 2 5 3 4 | quslem | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑉 ↦ [ 𝑥 ] 𝐸 ) : 𝑉 –onto→ ( 𝑉 / 𝐸 ) ) |
| 8 | 6 2 7 4 | imastps | ⊢ ( 𝜑 → 𝑈 ∈ TopSp ) |