Step |
Hyp |
Ref |
Expression |
1 |
|
qusval.u |
⊢ ( 𝜑 → 𝑈 = ( 𝑅 /s ∼ ) ) |
2 |
|
qusval.v |
⊢ ( 𝜑 → 𝑉 = ( Base ‘ 𝑅 ) ) |
3 |
|
qusval.f |
⊢ 𝐹 = ( 𝑥 ∈ 𝑉 ↦ [ 𝑥 ] ∼ ) |
4 |
|
qusval.e |
⊢ ( 𝜑 → ∼ ∈ 𝑊 ) |
5 |
|
qusval.r |
⊢ ( 𝜑 → 𝑅 ∈ 𝑍 ) |
6 |
|
df-qus |
⊢ /s = ( 𝑟 ∈ V , 𝑒 ∈ V ↦ ( ( 𝑥 ∈ ( Base ‘ 𝑟 ) ↦ [ 𝑥 ] 𝑒 ) “s 𝑟 ) ) |
7 |
6
|
a1i |
⊢ ( 𝜑 → /s = ( 𝑟 ∈ V , 𝑒 ∈ V ↦ ( ( 𝑥 ∈ ( Base ‘ 𝑟 ) ↦ [ 𝑥 ] 𝑒 ) “s 𝑟 ) ) ) |
8 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑟 = 𝑅 ∧ 𝑒 = ∼ ) ) → 𝑟 = 𝑅 ) |
9 |
8
|
fveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑟 = 𝑅 ∧ 𝑒 = ∼ ) ) → ( Base ‘ 𝑟 ) = ( Base ‘ 𝑅 ) ) |
10 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑟 = 𝑅 ∧ 𝑒 = ∼ ) ) → 𝑉 = ( Base ‘ 𝑅 ) ) |
11 |
9 10
|
eqtr4d |
⊢ ( ( 𝜑 ∧ ( 𝑟 = 𝑅 ∧ 𝑒 = ∼ ) ) → ( Base ‘ 𝑟 ) = 𝑉 ) |
12 |
|
eceq2 |
⊢ ( 𝑒 = ∼ → [ 𝑥 ] 𝑒 = [ 𝑥 ] ∼ ) |
13 |
12
|
ad2antll |
⊢ ( ( 𝜑 ∧ ( 𝑟 = 𝑅 ∧ 𝑒 = ∼ ) ) → [ 𝑥 ] 𝑒 = [ 𝑥 ] ∼ ) |
14 |
11 13
|
mpteq12dv |
⊢ ( ( 𝜑 ∧ ( 𝑟 = 𝑅 ∧ 𝑒 = ∼ ) ) → ( 𝑥 ∈ ( Base ‘ 𝑟 ) ↦ [ 𝑥 ] 𝑒 ) = ( 𝑥 ∈ 𝑉 ↦ [ 𝑥 ] ∼ ) ) |
15 |
14 3
|
eqtr4di |
⊢ ( ( 𝜑 ∧ ( 𝑟 = 𝑅 ∧ 𝑒 = ∼ ) ) → ( 𝑥 ∈ ( Base ‘ 𝑟 ) ↦ [ 𝑥 ] 𝑒 ) = 𝐹 ) |
16 |
15 8
|
oveq12d |
⊢ ( ( 𝜑 ∧ ( 𝑟 = 𝑅 ∧ 𝑒 = ∼ ) ) → ( ( 𝑥 ∈ ( Base ‘ 𝑟 ) ↦ [ 𝑥 ] 𝑒 ) “s 𝑟 ) = ( 𝐹 “s 𝑅 ) ) |
17 |
5
|
elexd |
⊢ ( 𝜑 → 𝑅 ∈ V ) |
18 |
4
|
elexd |
⊢ ( 𝜑 → ∼ ∈ V ) |
19 |
|
ovexd |
⊢ ( 𝜑 → ( 𝐹 “s 𝑅 ) ∈ V ) |
20 |
7 16 17 18 19
|
ovmpod |
⊢ ( 𝜑 → ( 𝑅 /s ∼ ) = ( 𝐹 “s 𝑅 ) ) |
21 |
1 20
|
eqtrd |
⊢ ( 𝜑 → 𝑈 = ( 𝐹 “s 𝑅 ) ) |