| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							qusval.u | 
							⊢ ( 𝜑  →  𝑈  =  ( 𝑅  /s   ∼  ) )  | 
						
						
							| 2 | 
							
								
							 | 
							qusval.v | 
							⊢ ( 𝜑  →  𝑉  =  ( Base ‘ 𝑅 ) )  | 
						
						
							| 3 | 
							
								
							 | 
							qusval.f | 
							⊢ 𝐹  =  ( 𝑥  ∈  𝑉  ↦  [ 𝑥 ]  ∼  )  | 
						
						
							| 4 | 
							
								
							 | 
							qusval.e | 
							⊢ ( 𝜑  →   ∼   ∈  𝑊 )  | 
						
						
							| 5 | 
							
								
							 | 
							qusval.r | 
							⊢ ( 𝜑  →  𝑅  ∈  𝑍 )  | 
						
						
							| 6 | 
							
								
							 | 
							df-qus | 
							⊢  /s   =  ( 𝑟  ∈  V ,  𝑒  ∈  V  ↦  ( ( 𝑥  ∈  ( Base ‘ 𝑟 )  ↦  [ 𝑥 ] 𝑒 )  “s  𝑟 ) )  | 
						
						
							| 7 | 
							
								6
							 | 
							a1i | 
							⊢ ( 𝜑  →   /s   =  ( 𝑟  ∈  V ,  𝑒  ∈  V  ↦  ( ( 𝑥  ∈  ( Base ‘ 𝑟 )  ↦  [ 𝑥 ] 𝑒 )  “s  𝑟 ) ) )  | 
						
						
							| 8 | 
							
								
							 | 
							simprl | 
							⊢ ( ( 𝜑  ∧  ( 𝑟  =  𝑅  ∧  𝑒  =   ∼  ) )  →  𝑟  =  𝑅 )  | 
						
						
							| 9 | 
							
								8
							 | 
							fveq2d | 
							⊢ ( ( 𝜑  ∧  ( 𝑟  =  𝑅  ∧  𝑒  =   ∼  ) )  →  ( Base ‘ 𝑟 )  =  ( Base ‘ 𝑅 ) )  | 
						
						
							| 10 | 
							
								2
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  ( 𝑟  =  𝑅  ∧  𝑒  =   ∼  ) )  →  𝑉  =  ( Base ‘ 𝑅 ) )  | 
						
						
							| 11 | 
							
								9 10
							 | 
							eqtr4d | 
							⊢ ( ( 𝜑  ∧  ( 𝑟  =  𝑅  ∧  𝑒  =   ∼  ) )  →  ( Base ‘ 𝑟 )  =  𝑉 )  | 
						
						
							| 12 | 
							
								
							 | 
							eceq2 | 
							⊢ ( 𝑒  =   ∼   →  [ 𝑥 ] 𝑒  =  [ 𝑥 ]  ∼  )  | 
						
						
							| 13 | 
							
								12
							 | 
							ad2antll | 
							⊢ ( ( 𝜑  ∧  ( 𝑟  =  𝑅  ∧  𝑒  =   ∼  ) )  →  [ 𝑥 ] 𝑒  =  [ 𝑥 ]  ∼  )  | 
						
						
							| 14 | 
							
								11 13
							 | 
							mpteq12dv | 
							⊢ ( ( 𝜑  ∧  ( 𝑟  =  𝑅  ∧  𝑒  =   ∼  ) )  →  ( 𝑥  ∈  ( Base ‘ 𝑟 )  ↦  [ 𝑥 ] 𝑒 )  =  ( 𝑥  ∈  𝑉  ↦  [ 𝑥 ]  ∼  ) )  | 
						
						
							| 15 | 
							
								14 3
							 | 
							eqtr4di | 
							⊢ ( ( 𝜑  ∧  ( 𝑟  =  𝑅  ∧  𝑒  =   ∼  ) )  →  ( 𝑥  ∈  ( Base ‘ 𝑟 )  ↦  [ 𝑥 ] 𝑒 )  =  𝐹 )  | 
						
						
							| 16 | 
							
								15 8
							 | 
							oveq12d | 
							⊢ ( ( 𝜑  ∧  ( 𝑟  =  𝑅  ∧  𝑒  =   ∼  ) )  →  ( ( 𝑥  ∈  ( Base ‘ 𝑟 )  ↦  [ 𝑥 ] 𝑒 )  “s  𝑟 )  =  ( 𝐹  “s  𝑅 ) )  | 
						
						
							| 17 | 
							
								5
							 | 
							elexd | 
							⊢ ( 𝜑  →  𝑅  ∈  V )  | 
						
						
							| 18 | 
							
								4
							 | 
							elexd | 
							⊢ ( 𝜑  →   ∼   ∈  V )  | 
						
						
							| 19 | 
							
								
							 | 
							ovexd | 
							⊢ ( 𝜑  →  ( 𝐹  “s  𝑅 )  ∈  V )  | 
						
						
							| 20 | 
							
								7 16 17 18 19
							 | 
							ovmpod | 
							⊢ ( 𝜑  →  ( 𝑅  /s   ∼  )  =  ( 𝐹  “s  𝑅 ) )  | 
						
						
							| 21 | 
							
								1 20
							 | 
							eqtrd | 
							⊢ ( 𝜑  →  𝑈  =  ( 𝐹  “s  𝑅 ) )  |