Metamath Proof Explorer


Theorem qusvsval

Description: Value of the scalar multiplication operation on the quotient structure. (Contributed by Thierry Arnoux, 18-May-2023)

Ref Expression
Hypotheses eqgvscpbl.v 𝐵 = ( Base ‘ 𝑀 )
eqgvscpbl.e = ( 𝑀 ~QG 𝐺 )
eqgvscpbl.s 𝑆 = ( Base ‘ ( Scalar ‘ 𝑀 ) )
eqgvscpbl.p · = ( ·𝑠𝑀 )
eqgvscpbl.m ( 𝜑𝑀 ∈ LMod )
eqgvscpbl.g ( 𝜑𝐺 ∈ ( LSubSp ‘ 𝑀 ) )
eqgvscpbl.k ( 𝜑𝐾𝑆 )
qusvsval.n 𝑁 = ( 𝑀 /s ( 𝑀 ~QG 𝐺 ) )
qusvsval.m = ( ·𝑠𝑁 )
qusvsval.x ( 𝜑𝑋𝐵 )
Assertion qusvsval ( 𝜑 → ( 𝐾 [ 𝑋 ] ( 𝑀 ~QG 𝐺 ) ) = [ ( 𝐾 · 𝑋 ) ] ( 𝑀 ~QG 𝐺 ) )

Proof

Step Hyp Ref Expression
1 eqgvscpbl.v 𝐵 = ( Base ‘ 𝑀 )
2 eqgvscpbl.e = ( 𝑀 ~QG 𝐺 )
3 eqgvscpbl.s 𝑆 = ( Base ‘ ( Scalar ‘ 𝑀 ) )
4 eqgvscpbl.p · = ( ·𝑠𝑀 )
5 eqgvscpbl.m ( 𝜑𝑀 ∈ LMod )
6 eqgvscpbl.g ( 𝜑𝐺 ∈ ( LSubSp ‘ 𝑀 ) )
7 eqgvscpbl.k ( 𝜑𝐾𝑆 )
8 qusvsval.n 𝑁 = ( 𝑀 /s ( 𝑀 ~QG 𝐺 ) )
9 qusvsval.m = ( ·𝑠𝑁 )
10 qusvsval.x ( 𝜑𝑋𝐵 )
11 8 a1i ( 𝜑𝑁 = ( 𝑀 /s ( 𝑀 ~QG 𝐺 ) ) )
12 1 a1i ( 𝜑𝐵 = ( Base ‘ 𝑀 ) )
13 eqid ( 𝑥𝐵 ↦ [ 𝑥 ] ( 𝑀 ~QG 𝐺 ) ) = ( 𝑥𝐵 ↦ [ 𝑥 ] ( 𝑀 ~QG 𝐺 ) )
14 ovex ( 𝑀 ~QG 𝐺 ) ∈ V
15 14 a1i ( 𝜑 → ( 𝑀 ~QG 𝐺 ) ∈ V )
16 11 12 13 15 5 qusval ( 𝜑𝑁 = ( ( 𝑥𝐵 ↦ [ 𝑥 ] ( 𝑀 ~QG 𝐺 ) ) “s 𝑀 ) )
17 11 12 13 15 5 quslem ( 𝜑 → ( 𝑥𝐵 ↦ [ 𝑥 ] ( 𝑀 ~QG 𝐺 ) ) : 𝐵onto→ ( 𝐵 / ( 𝑀 ~QG 𝐺 ) ) )
18 eqid ( Scalar ‘ 𝑀 ) = ( Scalar ‘ 𝑀 )
19 5 adantr ( ( 𝜑 ∧ ( 𝑘𝑆𝑢𝐵𝑣𝐵 ) ) → 𝑀 ∈ LMod )
20 6 adantr ( ( 𝜑 ∧ ( 𝑘𝑆𝑢𝐵𝑣𝐵 ) ) → 𝐺 ∈ ( LSubSp ‘ 𝑀 ) )
21 simpr1 ( ( 𝜑 ∧ ( 𝑘𝑆𝑢𝐵𝑣𝐵 ) ) → 𝑘𝑆 )
22 simpr2 ( ( 𝜑 ∧ ( 𝑘𝑆𝑢𝐵𝑣𝐵 ) ) → 𝑢𝐵 )
23 simpr3 ( ( 𝜑 ∧ ( 𝑘𝑆𝑢𝐵𝑣𝐵 ) ) → 𝑣𝐵 )
24 1 2 3 4 19 20 21 8 9 13 22 23 qusvscpbl ( ( 𝜑 ∧ ( 𝑘𝑆𝑢𝐵𝑣𝐵 ) ) → ( ( ( 𝑥𝐵 ↦ [ 𝑥 ] ( 𝑀 ~QG 𝐺 ) ) ‘ 𝑢 ) = ( ( 𝑥𝐵 ↦ [ 𝑥 ] ( 𝑀 ~QG 𝐺 ) ) ‘ 𝑣 ) → ( ( 𝑥𝐵 ↦ [ 𝑥 ] ( 𝑀 ~QG 𝐺 ) ) ‘ ( 𝑘 · 𝑢 ) ) = ( ( 𝑥𝐵 ↦ [ 𝑥 ] ( 𝑀 ~QG 𝐺 ) ) ‘ ( 𝑘 · 𝑣 ) ) ) )
25 16 12 17 5 18 3 4 9 24 imasvscaval ( ( 𝜑𝐾𝑆𝑋𝐵 ) → ( 𝐾 ( ( 𝑥𝐵 ↦ [ 𝑥 ] ( 𝑀 ~QG 𝐺 ) ) ‘ 𝑋 ) ) = ( ( 𝑥𝐵 ↦ [ 𝑥 ] ( 𝑀 ~QG 𝐺 ) ) ‘ ( 𝐾 · 𝑋 ) ) )
26 7 10 25 mpd3an23 ( 𝜑 → ( 𝐾 ( ( 𝑥𝐵 ↦ [ 𝑥 ] ( 𝑀 ~QG 𝐺 ) ) ‘ 𝑋 ) ) = ( ( 𝑥𝐵 ↦ [ 𝑥 ] ( 𝑀 ~QG 𝐺 ) ) ‘ ( 𝐾 · 𝑋 ) ) )
27 eceq1 ( 𝑥 = 𝑋 → [ 𝑥 ] ( 𝑀 ~QG 𝐺 ) = [ 𝑋 ] ( 𝑀 ~QG 𝐺 ) )
28 ecexg ( ( 𝑀 ~QG 𝐺 ) ∈ V → [ 𝑋 ] ( 𝑀 ~QG 𝐺 ) ∈ V )
29 14 28 ax-mp [ 𝑋 ] ( 𝑀 ~QG 𝐺 ) ∈ V
30 27 13 29 fvmpt ( 𝑋𝐵 → ( ( 𝑥𝐵 ↦ [ 𝑥 ] ( 𝑀 ~QG 𝐺 ) ) ‘ 𝑋 ) = [ 𝑋 ] ( 𝑀 ~QG 𝐺 ) )
31 10 30 syl ( 𝜑 → ( ( 𝑥𝐵 ↦ [ 𝑥 ] ( 𝑀 ~QG 𝐺 ) ) ‘ 𝑋 ) = [ 𝑋 ] ( 𝑀 ~QG 𝐺 ) )
32 31 oveq2d ( 𝜑 → ( 𝐾 ( ( 𝑥𝐵 ↦ [ 𝑥 ] ( 𝑀 ~QG 𝐺 ) ) ‘ 𝑋 ) ) = ( 𝐾 [ 𝑋 ] ( 𝑀 ~QG 𝐺 ) ) )
33 1 18 4 3 lmodvscl ( ( 𝑀 ∈ LMod ∧ 𝐾𝑆𝑋𝐵 ) → ( 𝐾 · 𝑋 ) ∈ 𝐵 )
34 5 7 10 33 syl3anc ( 𝜑 → ( 𝐾 · 𝑋 ) ∈ 𝐵 )
35 eceq1 ( 𝑥 = ( 𝐾 · 𝑋 ) → [ 𝑥 ] ( 𝑀 ~QG 𝐺 ) = [ ( 𝐾 · 𝑋 ) ] ( 𝑀 ~QG 𝐺 ) )
36 ecexg ( ( 𝑀 ~QG 𝐺 ) ∈ V → [ ( 𝐾 · 𝑋 ) ] ( 𝑀 ~QG 𝐺 ) ∈ V )
37 14 36 ax-mp [ ( 𝐾 · 𝑋 ) ] ( 𝑀 ~QG 𝐺 ) ∈ V
38 35 13 37 fvmpt ( ( 𝐾 · 𝑋 ) ∈ 𝐵 → ( ( 𝑥𝐵 ↦ [ 𝑥 ] ( 𝑀 ~QG 𝐺 ) ) ‘ ( 𝐾 · 𝑋 ) ) = [ ( 𝐾 · 𝑋 ) ] ( 𝑀 ~QG 𝐺 ) )
39 34 38 syl ( 𝜑 → ( ( 𝑥𝐵 ↦ [ 𝑥 ] ( 𝑀 ~QG 𝐺 ) ) ‘ ( 𝐾 · 𝑋 ) ) = [ ( 𝐾 · 𝑋 ) ] ( 𝑀 ~QG 𝐺 ) )
40 26 32 39 3eqtr3d ( 𝜑 → ( 𝐾 [ 𝑋 ] ( 𝑀 ~QG 𝐺 ) ) = [ ( 𝐾 · 𝑋 ) ] ( 𝑀 ~QG 𝐺 ) )