| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eqid |
⊢ ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝐽 ∣ 𝑧 ∈ 𝑤 } ) = ( 𝑧 ∈ 𝑋 ↦ { 𝑤 ∈ 𝐽 ∣ 𝑧 ∈ 𝑤 } ) |
| 2 |
1
|
isr0 |
⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → ( ( KQ ‘ 𝐽 ) ∈ Fre ↔ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ∀ 𝑜 ∈ 𝐽 ( 𝑥 ∈ 𝑜 → 𝑦 ∈ 𝑜 ) → ∀ 𝑜 ∈ 𝐽 ( 𝑥 ∈ 𝑜 ↔ 𝑦 ∈ 𝑜 ) ) ) ) |
| 3 |
2
|
biimpa |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( KQ ‘ 𝐽 ) ∈ Fre ) → ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ∀ 𝑜 ∈ 𝐽 ( 𝑥 ∈ 𝑜 → 𝑦 ∈ 𝑜 ) → ∀ 𝑜 ∈ 𝐽 ( 𝑥 ∈ 𝑜 ↔ 𝑦 ∈ 𝑜 ) ) ) |
| 4 |
|
eleq1 |
⊢ ( 𝑥 = 𝐴 → ( 𝑥 ∈ 𝑜 ↔ 𝐴 ∈ 𝑜 ) ) |
| 5 |
4
|
imbi1d |
⊢ ( 𝑥 = 𝐴 → ( ( 𝑥 ∈ 𝑜 → 𝑦 ∈ 𝑜 ) ↔ ( 𝐴 ∈ 𝑜 → 𝑦 ∈ 𝑜 ) ) ) |
| 6 |
5
|
ralbidv |
⊢ ( 𝑥 = 𝐴 → ( ∀ 𝑜 ∈ 𝐽 ( 𝑥 ∈ 𝑜 → 𝑦 ∈ 𝑜 ) ↔ ∀ 𝑜 ∈ 𝐽 ( 𝐴 ∈ 𝑜 → 𝑦 ∈ 𝑜 ) ) ) |
| 7 |
4
|
bibi1d |
⊢ ( 𝑥 = 𝐴 → ( ( 𝑥 ∈ 𝑜 ↔ 𝑦 ∈ 𝑜 ) ↔ ( 𝐴 ∈ 𝑜 ↔ 𝑦 ∈ 𝑜 ) ) ) |
| 8 |
7
|
ralbidv |
⊢ ( 𝑥 = 𝐴 → ( ∀ 𝑜 ∈ 𝐽 ( 𝑥 ∈ 𝑜 ↔ 𝑦 ∈ 𝑜 ) ↔ ∀ 𝑜 ∈ 𝐽 ( 𝐴 ∈ 𝑜 ↔ 𝑦 ∈ 𝑜 ) ) ) |
| 9 |
6 8
|
imbi12d |
⊢ ( 𝑥 = 𝐴 → ( ( ∀ 𝑜 ∈ 𝐽 ( 𝑥 ∈ 𝑜 → 𝑦 ∈ 𝑜 ) → ∀ 𝑜 ∈ 𝐽 ( 𝑥 ∈ 𝑜 ↔ 𝑦 ∈ 𝑜 ) ) ↔ ( ∀ 𝑜 ∈ 𝐽 ( 𝐴 ∈ 𝑜 → 𝑦 ∈ 𝑜 ) → ∀ 𝑜 ∈ 𝐽 ( 𝐴 ∈ 𝑜 ↔ 𝑦 ∈ 𝑜 ) ) ) ) |
| 10 |
|
eleq1 |
⊢ ( 𝑦 = 𝐵 → ( 𝑦 ∈ 𝑜 ↔ 𝐵 ∈ 𝑜 ) ) |
| 11 |
10
|
imbi2d |
⊢ ( 𝑦 = 𝐵 → ( ( 𝐴 ∈ 𝑜 → 𝑦 ∈ 𝑜 ) ↔ ( 𝐴 ∈ 𝑜 → 𝐵 ∈ 𝑜 ) ) ) |
| 12 |
11
|
ralbidv |
⊢ ( 𝑦 = 𝐵 → ( ∀ 𝑜 ∈ 𝐽 ( 𝐴 ∈ 𝑜 → 𝑦 ∈ 𝑜 ) ↔ ∀ 𝑜 ∈ 𝐽 ( 𝐴 ∈ 𝑜 → 𝐵 ∈ 𝑜 ) ) ) |
| 13 |
10
|
bibi2d |
⊢ ( 𝑦 = 𝐵 → ( ( 𝐴 ∈ 𝑜 ↔ 𝑦 ∈ 𝑜 ) ↔ ( 𝐴 ∈ 𝑜 ↔ 𝐵 ∈ 𝑜 ) ) ) |
| 14 |
13
|
ralbidv |
⊢ ( 𝑦 = 𝐵 → ( ∀ 𝑜 ∈ 𝐽 ( 𝐴 ∈ 𝑜 ↔ 𝑦 ∈ 𝑜 ) ↔ ∀ 𝑜 ∈ 𝐽 ( 𝐴 ∈ 𝑜 ↔ 𝐵 ∈ 𝑜 ) ) ) |
| 15 |
12 14
|
imbi12d |
⊢ ( 𝑦 = 𝐵 → ( ( ∀ 𝑜 ∈ 𝐽 ( 𝐴 ∈ 𝑜 → 𝑦 ∈ 𝑜 ) → ∀ 𝑜 ∈ 𝐽 ( 𝐴 ∈ 𝑜 ↔ 𝑦 ∈ 𝑜 ) ) ↔ ( ∀ 𝑜 ∈ 𝐽 ( 𝐴 ∈ 𝑜 → 𝐵 ∈ 𝑜 ) → ∀ 𝑜 ∈ 𝐽 ( 𝐴 ∈ 𝑜 ↔ 𝐵 ∈ 𝑜 ) ) ) ) |
| 16 |
9 15
|
rspc2v |
⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ∀ 𝑜 ∈ 𝐽 ( 𝑥 ∈ 𝑜 → 𝑦 ∈ 𝑜 ) → ∀ 𝑜 ∈ 𝐽 ( 𝑥 ∈ 𝑜 ↔ 𝑦 ∈ 𝑜 ) ) → ( ∀ 𝑜 ∈ 𝐽 ( 𝐴 ∈ 𝑜 → 𝐵 ∈ 𝑜 ) → ∀ 𝑜 ∈ 𝐽 ( 𝐴 ∈ 𝑜 ↔ 𝐵 ∈ 𝑜 ) ) ) ) |
| 17 |
3 16
|
mpan9 |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( KQ ‘ 𝐽 ) ∈ Fre ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → ( ∀ 𝑜 ∈ 𝐽 ( 𝐴 ∈ 𝑜 → 𝐵 ∈ 𝑜 ) → ∀ 𝑜 ∈ 𝐽 ( 𝐴 ∈ 𝑜 ↔ 𝐵 ∈ 𝑜 ) ) ) |