Metamath Proof Explorer


Theorem r10

Description: Value of the cumulative hierarchy of sets function at (/) . Part of Definition 9.9 of TakeutiZaring p. 76. (Contributed by NM, 2-Sep-2003) (Revised by Mario Carneiro, 10-Sep-2013)

Ref Expression
Assertion r10 ( 𝑅1 ‘ ∅ ) = ∅

Proof

Step Hyp Ref Expression
1 df-r1 𝑅1 = rec ( ( 𝑥 ∈ V ↦ 𝒫 𝑥 ) , ∅ )
2 1 fveq1i ( 𝑅1 ‘ ∅ ) = ( rec ( ( 𝑥 ∈ V ↦ 𝒫 𝑥 ) , ∅ ) ‘ ∅ )
3 0ex ∅ ∈ V
4 3 rdg0 ( rec ( ( 𝑥 ∈ V ↦ 𝒫 𝑥 ) , ∅ ) ‘ ∅ ) = ∅
5 2 4 eqtri ( 𝑅1 ‘ ∅ ) = ∅