Step |
Hyp |
Ref |
Expression |
1 |
|
r1fnon |
⊢ 𝑅1 Fn On |
2 |
|
dffn2 |
⊢ ( 𝑅1 Fn On ↔ 𝑅1 : On ⟶ V ) |
3 |
1 2
|
mpbi |
⊢ 𝑅1 : On ⟶ V |
4 |
|
eloni |
⊢ ( 𝑥 ∈ On → Ord 𝑥 ) |
5 |
|
eloni |
⊢ ( 𝑦 ∈ On → Ord 𝑦 ) |
6 |
|
ordtri3or |
⊢ ( ( Ord 𝑥 ∧ Ord 𝑦 ) → ( 𝑥 ∈ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ∈ 𝑥 ) ) |
7 |
4 5 6
|
syl2an |
⊢ ( ( 𝑥 ∈ On ∧ 𝑦 ∈ On ) → ( 𝑥 ∈ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ∈ 𝑥 ) ) |
8 |
|
sdomirr |
⊢ ¬ ( 𝑅1 ‘ 𝑦 ) ≺ ( 𝑅1 ‘ 𝑦 ) |
9 |
|
r1sdom |
⊢ ( ( 𝑦 ∈ On ∧ 𝑥 ∈ 𝑦 ) → ( 𝑅1 ‘ 𝑥 ) ≺ ( 𝑅1 ‘ 𝑦 ) ) |
10 |
|
breq1 |
⊢ ( ( 𝑅1 ‘ 𝑥 ) = ( 𝑅1 ‘ 𝑦 ) → ( ( 𝑅1 ‘ 𝑥 ) ≺ ( 𝑅1 ‘ 𝑦 ) ↔ ( 𝑅1 ‘ 𝑦 ) ≺ ( 𝑅1 ‘ 𝑦 ) ) ) |
11 |
9 10
|
syl5ibcom |
⊢ ( ( 𝑦 ∈ On ∧ 𝑥 ∈ 𝑦 ) → ( ( 𝑅1 ‘ 𝑥 ) = ( 𝑅1 ‘ 𝑦 ) → ( 𝑅1 ‘ 𝑦 ) ≺ ( 𝑅1 ‘ 𝑦 ) ) ) |
12 |
8 11
|
mtoi |
⊢ ( ( 𝑦 ∈ On ∧ 𝑥 ∈ 𝑦 ) → ¬ ( 𝑅1 ‘ 𝑥 ) = ( 𝑅1 ‘ 𝑦 ) ) |
13 |
12
|
3adant1 |
⊢ ( ( 𝑥 ∈ On ∧ 𝑦 ∈ On ∧ 𝑥 ∈ 𝑦 ) → ¬ ( 𝑅1 ‘ 𝑥 ) = ( 𝑅1 ‘ 𝑦 ) ) |
14 |
13
|
pm2.21d |
⊢ ( ( 𝑥 ∈ On ∧ 𝑦 ∈ On ∧ 𝑥 ∈ 𝑦 ) → ( ( 𝑅1 ‘ 𝑥 ) = ( 𝑅1 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) |
15 |
14
|
3expia |
⊢ ( ( 𝑥 ∈ On ∧ 𝑦 ∈ On ) → ( 𝑥 ∈ 𝑦 → ( ( 𝑅1 ‘ 𝑥 ) = ( 𝑅1 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ) |
16 |
|
ax-1 |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑅1 ‘ 𝑥 ) = ( 𝑅1 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) |
17 |
16
|
a1i |
⊢ ( ( 𝑥 ∈ On ∧ 𝑦 ∈ On ) → ( 𝑥 = 𝑦 → ( ( 𝑅1 ‘ 𝑥 ) = ( 𝑅1 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ) |
18 |
|
r1sdom |
⊢ ( ( 𝑥 ∈ On ∧ 𝑦 ∈ 𝑥 ) → ( 𝑅1 ‘ 𝑦 ) ≺ ( 𝑅1 ‘ 𝑥 ) ) |
19 |
|
breq2 |
⊢ ( ( 𝑅1 ‘ 𝑥 ) = ( 𝑅1 ‘ 𝑦 ) → ( ( 𝑅1 ‘ 𝑦 ) ≺ ( 𝑅1 ‘ 𝑥 ) ↔ ( 𝑅1 ‘ 𝑦 ) ≺ ( 𝑅1 ‘ 𝑦 ) ) ) |
20 |
18 19
|
syl5ibcom |
⊢ ( ( 𝑥 ∈ On ∧ 𝑦 ∈ 𝑥 ) → ( ( 𝑅1 ‘ 𝑥 ) = ( 𝑅1 ‘ 𝑦 ) → ( 𝑅1 ‘ 𝑦 ) ≺ ( 𝑅1 ‘ 𝑦 ) ) ) |
21 |
8 20
|
mtoi |
⊢ ( ( 𝑥 ∈ On ∧ 𝑦 ∈ 𝑥 ) → ¬ ( 𝑅1 ‘ 𝑥 ) = ( 𝑅1 ‘ 𝑦 ) ) |
22 |
21
|
3adant2 |
⊢ ( ( 𝑥 ∈ On ∧ 𝑦 ∈ On ∧ 𝑦 ∈ 𝑥 ) → ¬ ( 𝑅1 ‘ 𝑥 ) = ( 𝑅1 ‘ 𝑦 ) ) |
23 |
22
|
pm2.21d |
⊢ ( ( 𝑥 ∈ On ∧ 𝑦 ∈ On ∧ 𝑦 ∈ 𝑥 ) → ( ( 𝑅1 ‘ 𝑥 ) = ( 𝑅1 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) |
24 |
23
|
3expia |
⊢ ( ( 𝑥 ∈ On ∧ 𝑦 ∈ On ) → ( 𝑦 ∈ 𝑥 → ( ( 𝑅1 ‘ 𝑥 ) = ( 𝑅1 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ) |
25 |
15 17 24
|
3jaod |
⊢ ( ( 𝑥 ∈ On ∧ 𝑦 ∈ On ) → ( ( 𝑥 ∈ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ∈ 𝑥 ) → ( ( 𝑅1 ‘ 𝑥 ) = ( 𝑅1 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ) |
26 |
7 25
|
mpd |
⊢ ( ( 𝑥 ∈ On ∧ 𝑦 ∈ On ) → ( ( 𝑅1 ‘ 𝑥 ) = ( 𝑅1 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) |
27 |
26
|
rgen2 |
⊢ ∀ 𝑥 ∈ On ∀ 𝑦 ∈ On ( ( 𝑅1 ‘ 𝑥 ) = ( 𝑅1 ‘ 𝑦 ) → 𝑥 = 𝑦 ) |
28 |
|
dff13 |
⊢ ( 𝑅1 : On –1-1→ V ↔ ( 𝑅1 : On ⟶ V ∧ ∀ 𝑥 ∈ On ∀ 𝑦 ∈ On ( ( 𝑅1 ‘ 𝑥 ) = ( 𝑅1 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ) |
29 |
3 27 28
|
mpbir2an |
⊢ 𝑅1 : On –1-1→ V |