Metamath Proof Explorer


Theorem r19.12

Description: Restricted quantifier version of 19.12 . (Contributed by NM, 15-Oct-2003) (Proof shortened by Andrew Salmon, 30-May-2011) Avoid ax-13 , ax-ext . (Revised by Wolf Lammen, 17-Jun-2023) (Proof shortened by Wolf Lammen, 4-Nov-2024)

Ref Expression
Assertion r19.12 ( ∃ 𝑥𝐴𝑦𝐵 𝜑 → ∀ 𝑦𝐵𝑥𝐴 𝜑 )

Proof

Step Hyp Ref Expression
1 df-rex ( ∃ 𝑥𝐴𝑦𝐵 𝜑 ↔ ∃ 𝑥 ( 𝑥𝐴 ∧ ∀ 𝑦𝐵 𝜑 ) )
2 nfv 𝑦 𝑥𝐴
3 nfra1 𝑦𝑦𝐵 𝜑
4 2 3 nfan 𝑦 ( 𝑥𝐴 ∧ ∀ 𝑦𝐵 𝜑 )
5 4 nfex 𝑦𝑥 ( 𝑥𝐴 ∧ ∀ 𝑦𝐵 𝜑 )
6 1 5 nfxfr 𝑦𝑥𝐴𝑦𝐵 𝜑
7 rsp ( ∀ 𝑦𝐵 𝜑 → ( 𝑦𝐵𝜑 ) )
8 7 com12 ( 𝑦𝐵 → ( ∀ 𝑦𝐵 𝜑𝜑 ) )
9 8 reximdv ( 𝑦𝐵 → ( ∃ 𝑥𝐴𝑦𝐵 𝜑 → ∃ 𝑥𝐴 𝜑 ) )
10 9 com12 ( ∃ 𝑥𝐴𝑦𝐵 𝜑 → ( 𝑦𝐵 → ∃ 𝑥𝐴 𝜑 ) )
11 6 10 ralrimi ( ∃ 𝑥𝐴𝑦𝐵 𝜑 → ∀ 𝑦𝐵𝑥𝐴 𝜑 )