Step |
Hyp |
Ref |
Expression |
1 |
|
df-rex |
⊢ ( ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝜑 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐵 𝜑 ) ) |
2 |
|
nfv |
⊢ Ⅎ 𝑦 𝑥 ∈ 𝐴 |
3 |
|
nfra1 |
⊢ Ⅎ 𝑦 ∀ 𝑦 ∈ 𝐵 𝜑 |
4 |
2 3
|
nfan |
⊢ Ⅎ 𝑦 ( 𝑥 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐵 𝜑 ) |
5 |
4
|
nfex |
⊢ Ⅎ 𝑦 ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐵 𝜑 ) |
6 |
1 5
|
nfxfr |
⊢ Ⅎ 𝑦 ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝜑 |
7 |
|
ax-1 |
⊢ ( ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝜑 → ( 𝑦 ∈ 𝐵 → ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝜑 ) ) |
8 |
|
rsp |
⊢ ( ∀ 𝑦 ∈ 𝐵 𝜑 → ( 𝑦 ∈ 𝐵 → 𝜑 ) ) |
9 |
8
|
com12 |
⊢ ( 𝑦 ∈ 𝐵 → ( ∀ 𝑦 ∈ 𝐵 𝜑 → 𝜑 ) ) |
10 |
9
|
reximdv |
⊢ ( 𝑦 ∈ 𝐵 → ( ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝜑 → ∃ 𝑥 ∈ 𝐴 𝜑 ) ) |
11 |
7 10
|
sylcom |
⊢ ( ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝜑 → ( 𝑦 ∈ 𝐵 → ∃ 𝑥 ∈ 𝐴 𝜑 ) ) |
12 |
6 11
|
ralrimi |
⊢ ( ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝜑 → ∀ 𝑦 ∈ 𝐵 ∃ 𝑥 ∈ 𝐴 𝜑 ) |