Metamath Proof Explorer


Theorem r19.12OLD

Description: Obsolete version of 19.12 as of 4-Nov-2024. (Contributed by NM, 15-Oct-2003) (Proof shortened by Andrew Salmon, 30-May-2011) Avoid ax-13 , ax-ext . (Revised by Wolf Lammen, 17-Jun-2023) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion r19.12OLD ( ∃ 𝑥𝐴𝑦𝐵 𝜑 → ∀ 𝑦𝐵𝑥𝐴 𝜑 )

Proof

Step Hyp Ref Expression
1 df-rex ( ∃ 𝑥𝐴𝑦𝐵 𝜑 ↔ ∃ 𝑥 ( 𝑥𝐴 ∧ ∀ 𝑦𝐵 𝜑 ) )
2 nfv 𝑦 𝑥𝐴
3 nfra1 𝑦𝑦𝐵 𝜑
4 2 3 nfan 𝑦 ( 𝑥𝐴 ∧ ∀ 𝑦𝐵 𝜑 )
5 4 nfex 𝑦𝑥 ( 𝑥𝐴 ∧ ∀ 𝑦𝐵 𝜑 )
6 1 5 nfxfr 𝑦𝑥𝐴𝑦𝐵 𝜑
7 ax-1 ( ∃ 𝑥𝐴𝑦𝐵 𝜑 → ( 𝑦𝐵 → ∃ 𝑥𝐴𝑦𝐵 𝜑 ) )
8 rsp ( ∀ 𝑦𝐵 𝜑 → ( 𝑦𝐵𝜑 ) )
9 8 com12 ( 𝑦𝐵 → ( ∀ 𝑦𝐵 𝜑𝜑 ) )
10 9 reximdv ( 𝑦𝐵 → ( ∃ 𝑥𝐴𝑦𝐵 𝜑 → ∃ 𝑥𝐴 𝜑 ) )
11 7 10 sylcom ( ∃ 𝑥𝐴𝑦𝐵 𝜑 → ( 𝑦𝐵 → ∃ 𝑥𝐴 𝜑 ) )
12 6 11 ralrimi ( ∃ 𝑥𝐴𝑦𝐵 𝜑 → ∀ 𝑦𝐵𝑥𝐴 𝜑 )