Metamath Proof Explorer


Theorem r19.21

Description: Restricted quantifier version of 19.21 . (Contributed by Scott Fenton, 30-Mar-2011)

Ref Expression
Hypothesis r19.21.1 𝑥 𝜑
Assertion r19.21 ( ∀ 𝑥𝐴 ( 𝜑𝜓 ) ↔ ( 𝜑 → ∀ 𝑥𝐴 𝜓 ) )

Proof

Step Hyp Ref Expression
1 r19.21.1 𝑥 𝜑
2 r19.21t ( Ⅎ 𝑥 𝜑 → ( ∀ 𝑥𝐴 ( 𝜑𝜓 ) ↔ ( 𝜑 → ∀ 𝑥𝐴 𝜓 ) ) )
3 1 2 ax-mp ( ∀ 𝑥𝐴 ( 𝜑𝜓 ) ↔ ( 𝜑 → ∀ 𝑥𝐴 𝜓 ) )