Metamath Proof Explorer
Description: Restricted quantifier version of 19.21 . (Contributed by Scott
Fenton, 30-Mar-2011)
|
|
Ref |
Expression |
|
Hypothesis |
r19.21.1 |
⊢ Ⅎ 𝑥 𝜑 |
|
Assertion |
r19.21 |
⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝜑 → 𝜓 ) ↔ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 𝜓 ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
r19.21.1 |
⊢ Ⅎ 𝑥 𝜑 |
2 |
|
r19.21t |
⊢ ( Ⅎ 𝑥 𝜑 → ( ∀ 𝑥 ∈ 𝐴 ( 𝜑 → 𝜓 ) ↔ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 𝜓 ) ) ) |
3 |
1 2
|
ax-mp |
⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝜑 → 𝜓 ) ↔ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 𝜓 ) ) |