Metamath Proof Explorer
Description: Inference from Theorem 19.21 of Margaris p. 90. (Restricted
quantifier version.) (Contributed by NM, 21-Nov-1994)
|
|
Ref |
Expression |
|
Hypothesis |
r19.21be.1 |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 𝜓 ) |
|
Assertion |
r19.21be |
⊢ ∀ 𝑥 ∈ 𝐴 ( 𝜑 → 𝜓 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
r19.21be.1 |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 𝜓 ) |
2 |
1
|
r19.21bi |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝜓 ) |
3 |
2
|
expcom |
⊢ ( 𝑥 ∈ 𝐴 → ( 𝜑 → 𝜓 ) ) |
4 |
3
|
rgen |
⊢ ∀ 𝑥 ∈ 𝐴 ( 𝜑 → 𝜓 ) |