Metamath Proof Explorer


Theorem r19.21be

Description: Inference from Theorem 19.21 of Margaris p. 90. (Restricted quantifier version.) (Contributed by NM, 21-Nov-1994)

Ref Expression
Hypothesis r19.21be.1 ( 𝜑 → ∀ 𝑥𝐴 𝜓 )
Assertion r19.21be 𝑥𝐴 ( 𝜑𝜓 )

Proof

Step Hyp Ref Expression
1 r19.21be.1 ( 𝜑 → ∀ 𝑥𝐴 𝜓 )
2 1 r19.21bi ( ( 𝜑𝑥𝐴 ) → 𝜓 )
3 2 expcom ( 𝑥𝐴 → ( 𝜑𝜓 ) )
4 3 rgen 𝑥𝐴 ( 𝜑𝜓 )