Metamath Proof Explorer


Theorem r19.21t

Description: Restricted quantifier version of 19.21t ; closed form of r19.21 . (Contributed by NM, 1-Mar-2008) (Proof shortened by Wolf Lammen, 2-Jan-2020)

Ref Expression
Assertion r19.21t ( Ⅎ 𝑥 𝜑 → ( ∀ 𝑥𝐴 ( 𝜑𝜓 ) ↔ ( 𝜑 → ∀ 𝑥𝐴 𝜓 ) ) )

Proof

Step Hyp Ref Expression
1 19.21t ( Ⅎ 𝑥 𝜑 → ( ∀ 𝑥 ( 𝜑 → ( 𝑥𝐴𝜓 ) ) ↔ ( 𝜑 → ∀ 𝑥 ( 𝑥𝐴𝜓 ) ) ) )
2 df-ral ( ∀ 𝑥𝐴 ( 𝜑𝜓 ) ↔ ∀ 𝑥 ( 𝑥𝐴 → ( 𝜑𝜓 ) ) )
3 bi2.04 ( ( 𝑥𝐴 → ( 𝜑𝜓 ) ) ↔ ( 𝜑 → ( 𝑥𝐴𝜓 ) ) )
4 3 albii ( ∀ 𝑥 ( 𝑥𝐴 → ( 𝜑𝜓 ) ) ↔ ∀ 𝑥 ( 𝜑 → ( 𝑥𝐴𝜓 ) ) )
5 2 4 bitri ( ∀ 𝑥𝐴 ( 𝜑𝜓 ) ↔ ∀ 𝑥 ( 𝜑 → ( 𝑥𝐴𝜓 ) ) )
6 df-ral ( ∀ 𝑥𝐴 𝜓 ↔ ∀ 𝑥 ( 𝑥𝐴𝜓 ) )
7 6 imbi2i ( ( 𝜑 → ∀ 𝑥𝐴 𝜓 ) ↔ ( 𝜑 → ∀ 𝑥 ( 𝑥𝐴𝜓 ) ) )
8 1 5 7 3bitr4g ( Ⅎ 𝑥 𝜑 → ( ∀ 𝑥𝐴 ( 𝜑𝜓 ) ↔ ( 𝜑 → ∀ 𝑥𝐴 𝜓 ) ) )