Step |
Hyp |
Ref |
Expression |
1 |
|
19.21t |
⊢ ( Ⅎ 𝑥 𝜑 → ( ∀ 𝑥 ( 𝜑 → ( 𝑥 ∈ 𝐴 → 𝜓 ) ) ↔ ( 𝜑 → ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝜓 ) ) ) ) |
2 |
|
df-ral |
⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝜑 → 𝜓 ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ( 𝜑 → 𝜓 ) ) ) |
3 |
|
bi2.04 |
⊢ ( ( 𝑥 ∈ 𝐴 → ( 𝜑 → 𝜓 ) ) ↔ ( 𝜑 → ( 𝑥 ∈ 𝐴 → 𝜓 ) ) ) |
4 |
3
|
albii |
⊢ ( ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ( 𝜑 → 𝜓 ) ) ↔ ∀ 𝑥 ( 𝜑 → ( 𝑥 ∈ 𝐴 → 𝜓 ) ) ) |
5 |
2 4
|
bitri |
⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝜑 → 𝜓 ) ↔ ∀ 𝑥 ( 𝜑 → ( 𝑥 ∈ 𝐴 → 𝜓 ) ) ) |
6 |
|
df-ral |
⊢ ( ∀ 𝑥 ∈ 𝐴 𝜓 ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝜓 ) ) |
7 |
6
|
imbi2i |
⊢ ( ( 𝜑 → ∀ 𝑥 ∈ 𝐴 𝜓 ) ↔ ( 𝜑 → ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝜓 ) ) ) |
8 |
1 5 7
|
3bitr4g |
⊢ ( Ⅎ 𝑥 𝜑 → ( ∀ 𝑥 ∈ 𝐴 ( 𝜑 → 𝜓 ) ↔ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 𝜓 ) ) ) |