Metamath Proof Explorer


Theorem r19.21v

Description: Restricted quantifier version of 19.21v . (Contributed by NM, 15-Oct-2003) (Proof shortened by Andrew Salmon, 30-May-2011) Reduce dependencies on axioms. (Revised by Wolf Lammen, 2-Jan-2020)

Ref Expression
Assertion r19.21v ( ∀ 𝑥𝐴 ( 𝜑𝜓 ) ↔ ( 𝜑 → ∀ 𝑥𝐴 𝜓 ) )

Proof

Step Hyp Ref Expression
1 bi2.04 ( ( 𝑥𝐴 → ( 𝜑𝜓 ) ) ↔ ( 𝜑 → ( 𝑥𝐴𝜓 ) ) )
2 1 albii ( ∀ 𝑥 ( 𝑥𝐴 → ( 𝜑𝜓 ) ) ↔ ∀ 𝑥 ( 𝜑 → ( 𝑥𝐴𝜓 ) ) )
3 19.21v ( ∀ 𝑥 ( 𝜑 → ( 𝑥𝐴𝜓 ) ) ↔ ( 𝜑 → ∀ 𝑥 ( 𝑥𝐴𝜓 ) ) )
4 2 3 bitri ( ∀ 𝑥 ( 𝑥𝐴 → ( 𝜑𝜓 ) ) ↔ ( 𝜑 → ∀ 𝑥 ( 𝑥𝐴𝜓 ) ) )
5 df-ral ( ∀ 𝑥𝐴 ( 𝜑𝜓 ) ↔ ∀ 𝑥 ( 𝑥𝐴 → ( 𝜑𝜓 ) ) )
6 df-ral ( ∀ 𝑥𝐴 𝜓 ↔ ∀ 𝑥 ( 𝑥𝐴𝜓 ) )
7 6 imbi2i ( ( 𝜑 → ∀ 𝑥𝐴 𝜓 ) ↔ ( 𝜑 → ∀ 𝑥 ( 𝑥𝐴𝜓 ) ) )
8 4 5 7 3bitr4i ( ∀ 𝑥𝐴 ( 𝜑𝜓 ) ↔ ( 𝜑 → ∀ 𝑥𝐴 𝜓 ) )