Metamath Proof Explorer


Theorem r19.23v

Description: Restricted quantifier version of 19.23v . Version of r19.23 with a disjoint variable condition. (Contributed by NM, 31-Aug-1999) Reduce dependencies on axioms. (Revised by Wolf Lammen, 14-Jan-2020)

Ref Expression
Assertion r19.23v ( ∀ 𝑥𝐴 ( 𝜑𝜓 ) ↔ ( ∃ 𝑥𝐴 𝜑𝜓 ) )

Proof

Step Hyp Ref Expression
1 con34b ( ( 𝜑𝜓 ) ↔ ( ¬ 𝜓 → ¬ 𝜑 ) )
2 1 ralbii ( ∀ 𝑥𝐴 ( 𝜑𝜓 ) ↔ ∀ 𝑥𝐴 ( ¬ 𝜓 → ¬ 𝜑 ) )
3 r19.21v ( ∀ 𝑥𝐴 ( ¬ 𝜓 → ¬ 𝜑 ) ↔ ( ¬ 𝜓 → ∀ 𝑥𝐴 ¬ 𝜑 ) )
4 dfrex2 ( ∃ 𝑥𝐴 𝜑 ↔ ¬ ∀ 𝑥𝐴 ¬ 𝜑 )
5 4 imbi1i ( ( ∃ 𝑥𝐴 𝜑𝜓 ) ↔ ( ¬ ∀ 𝑥𝐴 ¬ 𝜑𝜓 ) )
6 con1b ( ( ¬ ∀ 𝑥𝐴 ¬ 𝜑𝜓 ) ↔ ( ¬ 𝜓 → ∀ 𝑥𝐴 ¬ 𝜑 ) )
7 5 6 bitr2i ( ( ¬ 𝜓 → ∀ 𝑥𝐴 ¬ 𝜑 ) ↔ ( ∃ 𝑥𝐴 𝜑𝜓 ) )
8 2 3 7 3bitri ( ∀ 𝑥𝐴 ( 𝜑𝜓 ) ↔ ( ∃ 𝑥𝐴 𝜑𝜓 ) )