Description: Restricted quantifier version of 19.23v . Version of r19.23 with a disjoint variable condition. (Contributed by NM, 31-Aug-1999) Reduce dependencies on axioms. (Revised by Wolf Lammen, 14-Jan-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | r19.23v | ⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝜑 → 𝜓 ) ↔ ( ∃ 𝑥 ∈ 𝐴 𝜑 → 𝜓 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | con34b | ⊢ ( ( 𝜑 → 𝜓 ) ↔ ( ¬ 𝜓 → ¬ 𝜑 ) ) | |
2 | 1 | ralbii | ⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝜑 → 𝜓 ) ↔ ∀ 𝑥 ∈ 𝐴 ( ¬ 𝜓 → ¬ 𝜑 ) ) |
3 | r19.21v | ⊢ ( ∀ 𝑥 ∈ 𝐴 ( ¬ 𝜓 → ¬ 𝜑 ) ↔ ( ¬ 𝜓 → ∀ 𝑥 ∈ 𝐴 ¬ 𝜑 ) ) | |
4 | dfrex2 | ⊢ ( ∃ 𝑥 ∈ 𝐴 𝜑 ↔ ¬ ∀ 𝑥 ∈ 𝐴 ¬ 𝜑 ) | |
5 | 4 | imbi1i | ⊢ ( ( ∃ 𝑥 ∈ 𝐴 𝜑 → 𝜓 ) ↔ ( ¬ ∀ 𝑥 ∈ 𝐴 ¬ 𝜑 → 𝜓 ) ) |
6 | con1b | ⊢ ( ( ¬ ∀ 𝑥 ∈ 𝐴 ¬ 𝜑 → 𝜓 ) ↔ ( ¬ 𝜓 → ∀ 𝑥 ∈ 𝐴 ¬ 𝜑 ) ) | |
7 | 5 6 | bitr2i | ⊢ ( ( ¬ 𝜓 → ∀ 𝑥 ∈ 𝐴 ¬ 𝜑 ) ↔ ( ∃ 𝑥 ∈ 𝐴 𝜑 → 𝜓 ) ) |
8 | 2 3 7 | 3bitri | ⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝜑 → 𝜓 ) ↔ ( ∃ 𝑥 ∈ 𝐴 𝜑 → 𝜓 ) ) |