Description: Restricted quantifier version of 19.26 . (Contributed by NM, 28-Jan-1997) (Proof shortened by Andrew Salmon, 30-May-2011)
Ref | Expression | ||
---|---|---|---|
Assertion | r19.26 | ⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝜑 ∧ 𝜓 ) ↔ ( ∀ 𝑥 ∈ 𝐴 𝜑 ∧ ∀ 𝑥 ∈ 𝐴 𝜓 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl | ⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝜑 ) | |
2 | 1 | ralimi | ⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝜑 ∧ 𝜓 ) → ∀ 𝑥 ∈ 𝐴 𝜑 ) |
3 | simpr | ⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝜓 ) | |
4 | 3 | ralimi | ⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝜑 ∧ 𝜓 ) → ∀ 𝑥 ∈ 𝐴 𝜓 ) |
5 | 2 4 | jca | ⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝜑 ∧ 𝜓 ) → ( ∀ 𝑥 ∈ 𝐴 𝜑 ∧ ∀ 𝑥 ∈ 𝐴 𝜓 ) ) |
6 | pm3.2 | ⊢ ( 𝜑 → ( 𝜓 → ( 𝜑 ∧ 𝜓 ) ) ) | |
7 | 6 | ral2imi | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝜑 → ( ∀ 𝑥 ∈ 𝐴 𝜓 → ∀ 𝑥 ∈ 𝐴 ( 𝜑 ∧ 𝜓 ) ) ) |
8 | 7 | imp | ⊢ ( ( ∀ 𝑥 ∈ 𝐴 𝜑 ∧ ∀ 𝑥 ∈ 𝐴 𝜓 ) → ∀ 𝑥 ∈ 𝐴 ( 𝜑 ∧ 𝜓 ) ) |
9 | 5 8 | impbii | ⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝜑 ∧ 𝜓 ) ↔ ( ∀ 𝑥 ∈ 𝐴 𝜑 ∧ ∀ 𝑥 ∈ 𝐴 𝜓 ) ) |