Metamath Proof Explorer


Theorem r19.26

Description: Restricted quantifier version of 19.26 . (Contributed by NM, 28-Jan-1997) (Proof shortened by Andrew Salmon, 30-May-2011)

Ref Expression
Assertion r19.26 ( ∀ 𝑥𝐴 ( 𝜑𝜓 ) ↔ ( ∀ 𝑥𝐴 𝜑 ∧ ∀ 𝑥𝐴 𝜓 ) )

Proof

Step Hyp Ref Expression
1 simpl ( ( 𝜑𝜓 ) → 𝜑 )
2 1 ralimi ( ∀ 𝑥𝐴 ( 𝜑𝜓 ) → ∀ 𝑥𝐴 𝜑 )
3 simpr ( ( 𝜑𝜓 ) → 𝜓 )
4 3 ralimi ( ∀ 𝑥𝐴 ( 𝜑𝜓 ) → ∀ 𝑥𝐴 𝜓 )
5 2 4 jca ( ∀ 𝑥𝐴 ( 𝜑𝜓 ) → ( ∀ 𝑥𝐴 𝜑 ∧ ∀ 𝑥𝐴 𝜓 ) )
6 pm3.2 ( 𝜑 → ( 𝜓 → ( 𝜑𝜓 ) ) )
7 6 ral2imi ( ∀ 𝑥𝐴 𝜑 → ( ∀ 𝑥𝐴 𝜓 → ∀ 𝑥𝐴 ( 𝜑𝜓 ) ) )
8 7 imp ( ( ∀ 𝑥𝐴 𝜑 ∧ ∀ 𝑥𝐴 𝜓 ) → ∀ 𝑥𝐴 ( 𝜑𝜓 ) )
9 5 8 impbii ( ∀ 𝑥𝐴 ( 𝜑𝜓 ) ↔ ( ∀ 𝑥𝐴 𝜑 ∧ ∀ 𝑥𝐴 𝜓 ) )