Description: Restricted quantifier version of 19.26-2 . Version of r19.26 with two quantifiers. (Contributed by NM, 10-Aug-2004)
Ref | Expression | ||
---|---|---|---|
Assertion | r19.26-2 | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜑 ∧ 𝜓 ) ↔ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝜑 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝜓 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | r19.26 | ⊢ ( ∀ 𝑦 ∈ 𝐵 ( 𝜑 ∧ 𝜓 ) ↔ ( ∀ 𝑦 ∈ 𝐵 𝜑 ∧ ∀ 𝑦 ∈ 𝐵 𝜓 ) ) | |
2 | 1 | ralbii | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜑 ∧ 𝜓 ) ↔ ∀ 𝑥 ∈ 𝐴 ( ∀ 𝑦 ∈ 𝐵 𝜑 ∧ ∀ 𝑦 ∈ 𝐵 𝜓 ) ) |
3 | r19.26 | ⊢ ( ∀ 𝑥 ∈ 𝐴 ( ∀ 𝑦 ∈ 𝐵 𝜑 ∧ ∀ 𝑦 ∈ 𝐵 𝜓 ) ↔ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝜑 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝜓 ) ) | |
4 | 2 3 | bitri | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜑 ∧ 𝜓 ) ↔ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝜑 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝜓 ) ) |