Metamath Proof Explorer


Theorem r19.26m

Description: Version of 19.26 and r19.26 with restricted quantifiers ranging over different classes. (Contributed by NM, 22-Feb-2004)

Ref Expression
Assertion r19.26m ( ∀ 𝑥 ( ( 𝑥𝐴𝜑 ) ∧ ( 𝑥𝐵𝜓 ) ) ↔ ( ∀ 𝑥𝐴 𝜑 ∧ ∀ 𝑥𝐵 𝜓 ) )

Proof

Step Hyp Ref Expression
1 19.26 ( ∀ 𝑥 ( ( 𝑥𝐴𝜑 ) ∧ ( 𝑥𝐵𝜓 ) ) ↔ ( ∀ 𝑥 ( 𝑥𝐴𝜑 ) ∧ ∀ 𝑥 ( 𝑥𝐵𝜓 ) ) )
2 df-ral ( ∀ 𝑥𝐴 𝜑 ↔ ∀ 𝑥 ( 𝑥𝐴𝜑 ) )
3 df-ral ( ∀ 𝑥𝐵 𝜓 ↔ ∀ 𝑥 ( 𝑥𝐵𝜓 ) )
4 2 3 anbi12i ( ( ∀ 𝑥𝐴 𝜑 ∧ ∀ 𝑥𝐵 𝜓 ) ↔ ( ∀ 𝑥 ( 𝑥𝐴𝜑 ) ∧ ∀ 𝑥 ( 𝑥𝐵𝜓 ) ) )
5 1 4 bitr4i ( ∀ 𝑥 ( ( 𝑥𝐴𝜑 ) ∧ ( 𝑥𝐵𝜓 ) ) ↔ ( ∀ 𝑥𝐴 𝜑 ∧ ∀ 𝑥𝐵 𝜓 ) )