Description: Version of 19.26 and r19.26 with restricted quantifiers ranging over different classes. (Contributed by NM, 22-Feb-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | r19.26m | ⊢ ( ∀ 𝑥 ( ( 𝑥 ∈ 𝐴 → 𝜑 ) ∧ ( 𝑥 ∈ 𝐵 → 𝜓 ) ) ↔ ( ∀ 𝑥 ∈ 𝐴 𝜑 ∧ ∀ 𝑥 ∈ 𝐵 𝜓 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 19.26 | ⊢ ( ∀ 𝑥 ( ( 𝑥 ∈ 𝐴 → 𝜑 ) ∧ ( 𝑥 ∈ 𝐵 → 𝜓 ) ) ↔ ( ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝜑 ) ∧ ∀ 𝑥 ( 𝑥 ∈ 𝐵 → 𝜓 ) ) ) | |
| 2 | df-ral | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝜑 ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝜑 ) ) | |
| 3 | df-ral | ⊢ ( ∀ 𝑥 ∈ 𝐵 𝜓 ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐵 → 𝜓 ) ) | |
| 4 | 2 3 | anbi12i | ⊢ ( ( ∀ 𝑥 ∈ 𝐴 𝜑 ∧ ∀ 𝑥 ∈ 𝐵 𝜓 ) ↔ ( ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝜑 ) ∧ ∀ 𝑥 ( 𝑥 ∈ 𝐵 → 𝜓 ) ) ) |
| 5 | 1 4 | bitr4i | ⊢ ( ∀ 𝑥 ( ( 𝑥 ∈ 𝐴 → 𝜑 ) ∧ ( 𝑥 ∈ 𝐵 → 𝜓 ) ) ↔ ( ∀ 𝑥 ∈ 𝐴 𝜑 ∧ ∀ 𝑥 ∈ 𝐵 𝜓 ) ) |