Metamath Proof Explorer


Theorem r19.28zf

Description: Restricted quantifier version of Theorem 19.28 of Margaris p. 90. It is valid only when the domain of quantification is not empty. (Contributed by Glauco Siliprandi, 24-Jan-2025)

Ref Expression
Hypotheses r19.28zf.1 𝑥 𝜑
r19.28zf.2 𝑥 𝐴
Assertion r19.28zf ( 𝐴 ≠ ∅ → ( ∀ 𝑥𝐴 ( 𝜑𝜓 ) ↔ ( 𝜑 ∧ ∀ 𝑥𝐴 𝜓 ) ) )

Proof

Step Hyp Ref Expression
1 r19.28zf.1 𝑥 𝜑
2 r19.28zf.2 𝑥 𝐴
3 r19.26 ( ∀ 𝑥𝐴 ( 𝜑𝜓 ) ↔ ( ∀ 𝑥𝐴 𝜑 ∧ ∀ 𝑥𝐴 𝜓 ) )
4 1 2 r19.3rzf ( 𝐴 ≠ ∅ → ( 𝜑 ↔ ∀ 𝑥𝐴 𝜑 ) )
5 4 anbi1d ( 𝐴 ≠ ∅ → ( ( 𝜑 ∧ ∀ 𝑥𝐴 𝜓 ) ↔ ( ∀ 𝑥𝐴 𝜑 ∧ ∀ 𝑥𝐴 𝜓 ) ) )
6 3 5 bitr4id ( 𝐴 ≠ ∅ → ( ∀ 𝑥𝐴 ( 𝜑𝜓 ) ↔ ( 𝜑 ∧ ∀ 𝑥𝐴 𝜓 ) ) )