Metamath Proof Explorer


Theorem r19.29af

Description: A commonly used pattern based on r19.29 . See r19.29a , r19.29an for a variant when x is disjoint from ph . (Contributed by Thierry Arnoux, 29-Nov-2017)

Ref Expression
Hypotheses r19.29af.0 𝑥 𝜑
r19.29af.1 ( ( ( 𝜑𝑥𝐴 ) ∧ 𝜓 ) → 𝜒 )
r19.29af.2 ( 𝜑 → ∃ 𝑥𝐴 𝜓 )
Assertion r19.29af ( 𝜑𝜒 )

Proof

Step Hyp Ref Expression
1 r19.29af.0 𝑥 𝜑
2 r19.29af.1 ( ( ( 𝜑𝑥𝐴 ) ∧ 𝜓 ) → 𝜒 )
3 r19.29af.2 ( 𝜑 → ∃ 𝑥𝐴 𝜓 )
4 nfv 𝑥 𝜒
5 1 4 2 3 r19.29af2 ( 𝜑𝜒 )