Metamath Proof Explorer
Description: A commonly used pattern based on r19.29 . (Contributed by Thierry
Arnoux, 17-Dec-2017) (Proof shortened by OpenAI, 25-Mar-2020)
|
|
Ref |
Expression |
|
Hypotheses |
r19.29af2.p |
⊢ Ⅎ 𝑥 𝜑 |
|
|
r19.29af2.c |
⊢ Ⅎ 𝑥 𝜒 |
|
|
r19.29af2.1 |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝜓 ) → 𝜒 ) |
|
|
r19.29af2.2 |
⊢ ( 𝜑 → ∃ 𝑥 ∈ 𝐴 𝜓 ) |
|
Assertion |
r19.29af2 |
⊢ ( 𝜑 → 𝜒 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
r19.29af2.p |
⊢ Ⅎ 𝑥 𝜑 |
2 |
|
r19.29af2.c |
⊢ Ⅎ 𝑥 𝜒 |
3 |
|
r19.29af2.1 |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝜓 ) → 𝜒 ) |
4 |
|
r19.29af2.2 |
⊢ ( 𝜑 → ∃ 𝑥 ∈ 𝐴 𝜓 ) |
5 |
3
|
exp31 |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 → ( 𝜓 → 𝜒 ) ) ) |
6 |
1 2 5
|
rexlimd |
⊢ ( 𝜑 → ( ∃ 𝑥 ∈ 𝐴 𝜓 → 𝜒 ) ) |
7 |
4 6
|
mpd |
⊢ ( 𝜑 → 𝜒 ) |