Metamath Proof Explorer


Theorem r19.29an

Description: A commonly used pattern in the spirit of r19.29 . (Contributed by Thierry Arnoux, 29-Dec-2019) (Proof shortened by Wolf Lammen, 17-Jun-2023)

Ref Expression
Hypothesis rexlimdva2.1 ( ( ( 𝜑𝑥𝐴 ) ∧ 𝜓 ) → 𝜒 )
Assertion r19.29an ( ( 𝜑 ∧ ∃ 𝑥𝐴 𝜓 ) → 𝜒 )

Proof

Step Hyp Ref Expression
1 rexlimdva2.1 ( ( ( 𝜑𝑥𝐴 ) ∧ 𝜓 ) → 𝜒 )
2 1 rexlimdva2 ( 𝜑 → ( ∃ 𝑥𝐴 𝜓𝜒 ) )
3 2 imp ( ( 𝜑 ∧ ∃ 𝑥𝐴 𝜓 ) → 𝜒 )