Metamath Proof Explorer


Theorem r19.29d2r

Description: Theorem 19.29 of Margaris p. 90 with two restricted quantifiers, deduction version. (Contributed by Thierry Arnoux, 30-Jan-2017) (Proof shortened by Wolf Lammen, 4-Nov-2024)

Ref Expression
Hypotheses r19.29d2r.1 ( 𝜑 → ∀ 𝑥𝐴𝑦𝐵 𝜓 )
r19.29d2r.2 ( 𝜑 → ∃ 𝑥𝐴𝑦𝐵 𝜒 )
Assertion r19.29d2r ( 𝜑 → ∃ 𝑥𝐴𝑦𝐵 ( 𝜓𝜒 ) )

Proof

Step Hyp Ref Expression
1 r19.29d2r.1 ( 𝜑 → ∀ 𝑥𝐴𝑦𝐵 𝜓 )
2 r19.29d2r.2 ( 𝜑 → ∃ 𝑥𝐴𝑦𝐵 𝜒 )
3 1 2 jca ( 𝜑 → ( ∀ 𝑥𝐴𝑦𝐵 𝜓 ∧ ∃ 𝑥𝐴𝑦𝐵 𝜒 ) )
4 2r19.29 ( ( ∀ 𝑥𝐴𝑦𝐵 𝜓 ∧ ∃ 𝑥𝐴𝑦𝐵 𝜒 ) → ∃ 𝑥𝐴𝑦𝐵 ( 𝜓𝜒 ) )
5 3 4 syl ( 𝜑 → ∃ 𝑥𝐴𝑦𝐵 ( 𝜓𝜒 ) )