Description: Obsolete version of r19.29d2r as of 4-Nov-2024. (Contributed by Thierry Arnoux, 30-Jan-2017) (New usage is discouraged.) (Proof modification is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | r19.29d2r.1 | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝜓 ) | |
r19.29d2r.2 | ⊢ ( 𝜑 → ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜒 ) | ||
Assertion | r19.29d2rOLD | ⊢ ( 𝜑 → ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 ( 𝜓 ∧ 𝜒 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | r19.29d2r.1 | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝜓 ) | |
2 | r19.29d2r.2 | ⊢ ( 𝜑 → ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜒 ) | |
3 | r19.29 | ⊢ ( ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝜓 ∧ ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜒 ) → ∃ 𝑥 ∈ 𝐴 ( ∀ 𝑦 ∈ 𝐵 𝜓 ∧ ∃ 𝑦 ∈ 𝐵 𝜒 ) ) | |
4 | 1 2 3 | syl2anc | ⊢ ( 𝜑 → ∃ 𝑥 ∈ 𝐴 ( ∀ 𝑦 ∈ 𝐵 𝜓 ∧ ∃ 𝑦 ∈ 𝐵 𝜒 ) ) |
5 | r19.29 | ⊢ ( ( ∀ 𝑦 ∈ 𝐵 𝜓 ∧ ∃ 𝑦 ∈ 𝐵 𝜒 ) → ∃ 𝑦 ∈ 𝐵 ( 𝜓 ∧ 𝜒 ) ) | |
6 | 5 | reximi | ⊢ ( ∃ 𝑥 ∈ 𝐴 ( ∀ 𝑦 ∈ 𝐵 𝜓 ∧ ∃ 𝑦 ∈ 𝐵 𝜒 ) → ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 ( 𝜓 ∧ 𝜒 ) ) |
7 | 4 6 | syl | ⊢ ( 𝜑 → ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 ( 𝜓 ∧ 𝜒 ) ) |