Metamath Proof Explorer


Theorem r19.29d2rOLD

Description: Obsolete version of r19.29d2r as of 4-Nov-2024. (Contributed by Thierry Arnoux, 30-Jan-2017) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Hypotheses r19.29d2r.1 ( 𝜑 → ∀ 𝑥𝐴𝑦𝐵 𝜓 )
r19.29d2r.2 ( 𝜑 → ∃ 𝑥𝐴𝑦𝐵 𝜒 )
Assertion r19.29d2rOLD ( 𝜑 → ∃ 𝑥𝐴𝑦𝐵 ( 𝜓𝜒 ) )

Proof

Step Hyp Ref Expression
1 r19.29d2r.1 ( 𝜑 → ∀ 𝑥𝐴𝑦𝐵 𝜓 )
2 r19.29d2r.2 ( 𝜑 → ∃ 𝑥𝐴𝑦𝐵 𝜒 )
3 r19.29 ( ( ∀ 𝑥𝐴𝑦𝐵 𝜓 ∧ ∃ 𝑥𝐴𝑦𝐵 𝜒 ) → ∃ 𝑥𝐴 ( ∀ 𝑦𝐵 𝜓 ∧ ∃ 𝑦𝐵 𝜒 ) )
4 1 2 3 syl2anc ( 𝜑 → ∃ 𝑥𝐴 ( ∀ 𝑦𝐵 𝜓 ∧ ∃ 𝑦𝐵 𝜒 ) )
5 r19.29 ( ( ∀ 𝑦𝐵 𝜓 ∧ ∃ 𝑦𝐵 𝜒 ) → ∃ 𝑦𝐵 ( 𝜓𝜒 ) )
6 5 reximi ( ∃ 𝑥𝐴 ( ∀ 𝑦𝐵 𝜓 ∧ ∃ 𝑦𝐵 𝜒 ) → ∃ 𝑥𝐴𝑦𝐵 ( 𝜓𝜒 ) )
7 4 6 syl ( 𝜑 → ∃ 𝑥𝐴𝑦𝐵 ( 𝜓𝜒 ) )