Metamath Proof Explorer


Theorem r19.29imd

Description: Theorem 19.29 of Margaris p. 90 with an implication in the hypothesis containing the generalization, deduction version. (Contributed by AV, 19-Jan-2019)

Ref Expression
Hypotheses r19.29imd.1 ( 𝜑 → ∃ 𝑥𝐴 𝜓 )
r19.29imd.2 ( 𝜑 → ∀ 𝑥𝐴 ( 𝜓𝜒 ) )
Assertion r19.29imd ( 𝜑 → ∃ 𝑥𝐴 ( 𝜓𝜒 ) )

Proof

Step Hyp Ref Expression
1 r19.29imd.1 ( 𝜑 → ∃ 𝑥𝐴 𝜓 )
2 r19.29imd.2 ( 𝜑 → ∀ 𝑥𝐴 ( 𝜓𝜒 ) )
3 r19.29r ( ( ∃ 𝑥𝐴 𝜓 ∧ ∀ 𝑥𝐴 ( 𝜓𝜒 ) ) → ∃ 𝑥𝐴 ( 𝜓 ∧ ( 𝜓𝜒 ) ) )
4 1 2 3 syl2anc ( 𝜑 → ∃ 𝑥𝐴 ( 𝜓 ∧ ( 𝜓𝜒 ) ) )
5 abai ( ( 𝜓𝜒 ) ↔ ( 𝜓 ∧ ( 𝜓𝜒 ) ) )
6 5 rexbii ( ∃ 𝑥𝐴 ( 𝜓𝜒 ) ↔ ∃ 𝑥𝐴 ( 𝜓 ∧ ( 𝜓𝜒 ) ) )
7 4 6 sylibr ( 𝜑 → ∃ 𝑥𝐴 ( 𝜓𝜒 ) )