Metamath Proof Explorer


Theorem r19.29r

Description: Restricted quantifier version of 19.29r ; variation of r19.29 . (Contributed by NM, 31-Aug-1999) (Proof shortened by Wolf Lammen, 29-Jun-2023)

Ref Expression
Assertion r19.29r ( ( ∃ 𝑥𝐴 𝜑 ∧ ∀ 𝑥𝐴 𝜓 ) → ∃ 𝑥𝐴 ( 𝜑𝜓 ) )

Proof

Step Hyp Ref Expression
1 r19.29 ( ( ∀ 𝑥𝐴 𝜓 ∧ ∃ 𝑥𝐴 𝜑 ) → ∃ 𝑥𝐴 ( 𝜓𝜑 ) )
2 1 ancoms ( ( ∃ 𝑥𝐴 𝜑 ∧ ∀ 𝑥𝐴 𝜓 ) → ∃ 𝑥𝐴 ( 𝜓𝜑 ) )
3 pm3.22 ( ( 𝜓𝜑 ) → ( 𝜑𝜓 ) )
4 3 reximi ( ∃ 𝑥𝐴 ( 𝜓𝜑 ) → ∃ 𝑥𝐴 ( 𝜑𝜓 ) )
5 2 4 syl ( ( ∃ 𝑥𝐴 𝜑 ∧ ∀ 𝑥𝐴 𝜓 ) → ∃ 𝑥𝐴 ( 𝜑𝜓 ) )