Metamath Proof Explorer


Theorem r19.29uz

Description: A version of 19.29 for upper integer quantifiers. (Contributed by Mario Carneiro, 10-Feb-2014)

Ref Expression
Hypothesis rexuz3.1 𝑍 = ( ℤ𝑀 )
Assertion r19.29uz ( ( ∀ 𝑘𝑍 𝜑 ∧ ∃ 𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) 𝜓 ) → ∃ 𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) ( 𝜑𝜓 ) )

Proof

Step Hyp Ref Expression
1 rexuz3.1 𝑍 = ( ℤ𝑀 )
2 1 uztrn2 ( ( 𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) ) → 𝑘𝑍 )
3 2 ex ( 𝑗𝑍 → ( 𝑘 ∈ ( ℤ𝑗 ) → 𝑘𝑍 ) )
4 pm3.2 ( 𝜑 → ( 𝜓 → ( 𝜑𝜓 ) ) )
5 4 a1i ( 𝑗𝑍 → ( 𝜑 → ( 𝜓 → ( 𝜑𝜓 ) ) ) )
6 3 5 imim12d ( 𝑗𝑍 → ( ( 𝑘𝑍𝜑 ) → ( 𝑘 ∈ ( ℤ𝑗 ) → ( 𝜓 → ( 𝜑𝜓 ) ) ) ) )
7 6 ralimdv2 ( 𝑗𝑍 → ( ∀ 𝑘𝑍 𝜑 → ∀ 𝑘 ∈ ( ℤ𝑗 ) ( 𝜓 → ( 𝜑𝜓 ) ) ) )
8 7 impcom ( ( ∀ 𝑘𝑍 𝜑𝑗𝑍 ) → ∀ 𝑘 ∈ ( ℤ𝑗 ) ( 𝜓 → ( 𝜑𝜓 ) ) )
9 ralim ( ∀ 𝑘 ∈ ( ℤ𝑗 ) ( 𝜓 → ( 𝜑𝜓 ) ) → ( ∀ 𝑘 ∈ ( ℤ𝑗 ) 𝜓 → ∀ 𝑘 ∈ ( ℤ𝑗 ) ( 𝜑𝜓 ) ) )
10 8 9 syl ( ( ∀ 𝑘𝑍 𝜑𝑗𝑍 ) → ( ∀ 𝑘 ∈ ( ℤ𝑗 ) 𝜓 → ∀ 𝑘 ∈ ( ℤ𝑗 ) ( 𝜑𝜓 ) ) )
11 10 reximdva ( ∀ 𝑘𝑍 𝜑 → ( ∃ 𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) 𝜓 → ∃ 𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) ( 𝜑𝜓 ) ) )
12 11 imp ( ( ∀ 𝑘𝑍 𝜑 ∧ ∃ 𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) 𝜓 ) → ∃ 𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) ( 𝜑𝜓 ) )