Step |
Hyp |
Ref |
Expression |
1 |
|
rexuz3.1 |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
2 |
1
|
uztrn2 |
⊢ ( ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → 𝑘 ∈ 𝑍 ) |
3 |
2
|
ex |
⊢ ( 𝑗 ∈ 𝑍 → ( 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) → 𝑘 ∈ 𝑍 ) ) |
4 |
|
pm3.2 |
⊢ ( 𝜑 → ( 𝜓 → ( 𝜑 ∧ 𝜓 ) ) ) |
5 |
4
|
a1i |
⊢ ( 𝑗 ∈ 𝑍 → ( 𝜑 → ( 𝜓 → ( 𝜑 ∧ 𝜓 ) ) ) ) |
6 |
3 5
|
imim12d |
⊢ ( 𝑗 ∈ 𝑍 → ( ( 𝑘 ∈ 𝑍 → 𝜑 ) → ( 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) → ( 𝜓 → ( 𝜑 ∧ 𝜓 ) ) ) ) ) |
7 |
6
|
ralimdv2 |
⊢ ( 𝑗 ∈ 𝑍 → ( ∀ 𝑘 ∈ 𝑍 𝜑 → ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝜓 → ( 𝜑 ∧ 𝜓 ) ) ) ) |
8 |
7
|
impcom |
⊢ ( ( ∀ 𝑘 ∈ 𝑍 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝜓 → ( 𝜑 ∧ 𝜓 ) ) ) |
9 |
|
ralim |
⊢ ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝜓 → ( 𝜑 ∧ 𝜓 ) ) → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝜓 → ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝜑 ∧ 𝜓 ) ) ) |
10 |
8 9
|
syl |
⊢ ( ( ∀ 𝑘 ∈ 𝑍 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝜓 → ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝜑 ∧ 𝜓 ) ) ) |
11 |
10
|
reximdva |
⊢ ( ∀ 𝑘 ∈ 𝑍 𝜑 → ( ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝜓 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝜑 ∧ 𝜓 ) ) ) |
12 |
11
|
imp |
⊢ ( ( ∀ 𝑘 ∈ 𝑍 𝜑 ∧ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝜓 ) → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝜑 ∧ 𝜓 ) ) |