Metamath Proof Explorer


Theorem r19.29vva

Description: A commonly used pattern based on r19.29 , version with two restricted quantifiers. (Contributed by Thierry Arnoux, 26-Nov-2017) (Proof shortened by Wolf Lammen, 4-Nov-2024)

Ref Expression
Hypotheses r19.29vva.1 ( ( ( ( 𝜑𝑥𝐴 ) ∧ 𝑦𝐵 ) ∧ 𝜓 ) → 𝜒 )
r19.29vva.2 ( 𝜑 → ∃ 𝑥𝐴𝑦𝐵 𝜓 )
Assertion r19.29vva ( 𝜑𝜒 )

Proof

Step Hyp Ref Expression
1 r19.29vva.1 ( ( ( ( 𝜑𝑥𝐴 ) ∧ 𝑦𝐵 ) ∧ 𝜓 ) → 𝜒 )
2 r19.29vva.2 ( 𝜑 → ∃ 𝑥𝐴𝑦𝐵 𝜓 )
3 1 2 reximddv2 ( 𝜑 → ∃ 𝑥𝐴𝑦𝐵 𝜒 )
4 idd ( ( 𝑥𝐴𝑦𝐵 ) → ( 𝜒𝜒 ) )
5 4 rexlimivv ( ∃ 𝑥𝐴𝑦𝐵 𝜒𝜒 )
6 3 5 syl ( 𝜑𝜒 )