Description: A commonly used pattern based on r19.29 , version with two restricted quantifiers. (Contributed by Thierry Arnoux, 26-Nov-2017) (Proof shortened by Wolf Lammen, 4-Nov-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | r19.29vva.1 | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝜓 ) → 𝜒 ) | |
r19.29vva.2 | ⊢ ( 𝜑 → ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜓 ) | ||
Assertion | r19.29vva | ⊢ ( 𝜑 → 𝜒 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | r19.29vva.1 | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝜓 ) → 𝜒 ) | |
2 | r19.29vva.2 | ⊢ ( 𝜑 → ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜓 ) | |
3 | 1 2 | reximddv2 | ⊢ ( 𝜑 → ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜒 ) |
4 | idd | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → ( 𝜒 → 𝜒 ) ) | |
5 | 4 | rexlimivv | ⊢ ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜒 → 𝜒 ) |
6 | 3 5 | syl | ⊢ ( 𝜑 → 𝜒 ) |