Metamath Proof Explorer


Theorem r19.29vvaOLD

Description: Obsolete version of r19.29vva as of 4-Nov-2024. (Contributed by Thierry Arnoux, 26-Nov-2017) (Proof shortened by Wolf Lammen, 29-Jun-2023) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses r19.29vva.1 ( ( ( ( 𝜑𝑥𝐴 ) ∧ 𝑦𝐵 ) ∧ 𝜓 ) → 𝜒 )
r19.29vva.2 ( 𝜑 → ∃ 𝑥𝐴𝑦𝐵 𝜓 )
Assertion r19.29vvaOLD ( 𝜑𝜒 )

Proof

Step Hyp Ref Expression
1 r19.29vva.1 ( ( ( ( 𝜑𝑥𝐴 ) ∧ 𝑦𝐵 ) ∧ 𝜓 ) → 𝜒 )
2 r19.29vva.2 ( 𝜑 → ∃ 𝑥𝐴𝑦𝐵 𝜓 )
3 1 2 reximddv2 ( 𝜑 → ∃ 𝑥𝐴𝑦𝐵 𝜒 )
4 id ( 𝜒𝜒 )
5 4 rexlimivw ( ∃ 𝑦𝐵 𝜒𝜒 )
6 5 reximi ( ∃ 𝑥𝐴𝑦𝐵 𝜒 → ∃ 𝑥𝐴 𝜒 )
7 4 rexlimivw ( ∃ 𝑥𝐴 𝜒𝜒 )
8 3 6 7 3syl ( 𝜑𝜒 )