Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Restricted quantification
r19.29vvaOLD
Metamath Proof Explorer
Description: Obsolete version of r19.29vva as of 4-Nov-2024. (Contributed by Thierry Arnoux , 26-Nov-2017) (Proof shortened by Wolf Lammen , 29-Jun-2023) (Proof modification is discouraged.)
(New usage is discouraged.)
Ref
Expression
Hypotheses
r19.29vva.1
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝜓 ) → 𝜒 )
r19.29vva.2
⊢ ( 𝜑 → ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜓 )
Assertion
r19.29vvaOLD
⊢ ( 𝜑 → 𝜒 )
Proof
Step
Hyp
Ref
Expression
1
r19.29vva.1
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝜓 ) → 𝜒 )
2
r19.29vva.2
⊢ ( 𝜑 → ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜓 )
3
1 2
reximddv2
⊢ ( 𝜑 → ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜒 )
4
id
⊢ ( 𝜒 → 𝜒 )
5
4
rexlimivw
⊢ ( ∃ 𝑦 ∈ 𝐵 𝜒 → 𝜒 )
6
5
reximi
⊢ ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜒 → ∃ 𝑥 ∈ 𝐴 𝜒 )
7
4
rexlimivw
⊢ ( ∃ 𝑥 ∈ 𝐴 𝜒 → 𝜒 )
8
3 6 7
3syl
⊢ ( 𝜑 → 𝜒 )