Step |
Hyp |
Ref |
Expression |
1 |
|
rexuz3.1 |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
2 |
|
eluzelz |
⊢ ( 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑗 ∈ ℤ ) |
3 |
|
uzid |
⊢ ( 𝑗 ∈ ℤ → 𝑗 ∈ ( ℤ≥ ‘ 𝑗 ) ) |
4 |
|
ne0i |
⊢ ( 𝑗 ∈ ( ℤ≥ ‘ 𝑗 ) → ( ℤ≥ ‘ 𝑗 ) ≠ ∅ ) |
5 |
2 3 4
|
3syl |
⊢ ( 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ℤ≥ ‘ 𝑗 ) ≠ ∅ ) |
6 |
5 1
|
eleq2s |
⊢ ( 𝑗 ∈ 𝑍 → ( ℤ≥ ‘ 𝑗 ) ≠ ∅ ) |
7 |
|
r19.2z |
⊢ ( ( ( ℤ≥ ‘ 𝑗 ) ≠ ∅ ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝜑 ) → ∃ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝜑 ) |
8 |
6 7
|
sylan |
⊢ ( ( 𝑗 ∈ 𝑍 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝜑 ) → ∃ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝜑 ) |
9 |
1
|
uztrn2 |
⊢ ( ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → 𝑘 ∈ 𝑍 ) |
10 |
9
|
ex |
⊢ ( 𝑗 ∈ 𝑍 → ( 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) → 𝑘 ∈ 𝑍 ) ) |
11 |
10
|
anim1d |
⊢ ( 𝑗 ∈ 𝑍 → ( ( 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∧ 𝜑 ) → ( 𝑘 ∈ 𝑍 ∧ 𝜑 ) ) ) |
12 |
11
|
reximdv2 |
⊢ ( 𝑗 ∈ 𝑍 → ( ∃ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝜑 → ∃ 𝑘 ∈ 𝑍 𝜑 ) ) |
13 |
12
|
imp |
⊢ ( ( 𝑗 ∈ 𝑍 ∧ ∃ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝜑 ) → ∃ 𝑘 ∈ 𝑍 𝜑 ) |
14 |
8 13
|
syldan |
⊢ ( ( 𝑗 ∈ 𝑍 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝜑 ) → ∃ 𝑘 ∈ 𝑍 𝜑 ) |
15 |
14
|
rexlimiva |
⊢ ( ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝜑 → ∃ 𝑘 ∈ 𝑍 𝜑 ) |