Metamath Proof Explorer


Theorem r19.2z

Description: Theorem 19.2 of Margaris p. 89 with restricted quantifiers (compare 19.2 ). The restricted version is valid only when the domain of quantification is not empty. (Contributed by NM, 15-Nov-2003)

Ref Expression
Assertion r19.2z ( ( 𝐴 ≠ ∅ ∧ ∀ 𝑥𝐴 𝜑 ) → ∃ 𝑥𝐴 𝜑 )

Proof

Step Hyp Ref Expression
1 df-ral ( ∀ 𝑥𝐴 𝜑 ↔ ∀ 𝑥 ( 𝑥𝐴𝜑 ) )
2 exintr ( ∀ 𝑥 ( 𝑥𝐴𝜑 ) → ( ∃ 𝑥 𝑥𝐴 → ∃ 𝑥 ( 𝑥𝐴𝜑 ) ) )
3 1 2 sylbi ( ∀ 𝑥𝐴 𝜑 → ( ∃ 𝑥 𝑥𝐴 → ∃ 𝑥 ( 𝑥𝐴𝜑 ) ) )
4 n0 ( 𝐴 ≠ ∅ ↔ ∃ 𝑥 𝑥𝐴 )
5 df-rex ( ∃ 𝑥𝐴 𝜑 ↔ ∃ 𝑥 ( 𝑥𝐴𝜑 ) )
6 3 4 5 3imtr4g ( ∀ 𝑥𝐴 𝜑 → ( 𝐴 ≠ ∅ → ∃ 𝑥𝐴 𝜑 ) )
7 6 impcom ( ( 𝐴 ≠ ∅ ∧ ∀ 𝑥𝐴 𝜑 ) → ∃ 𝑥𝐴 𝜑 )