| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							r19.2z | 
							⊢ ( ( 𝐴  ≠  ∅  ∧  ∀ 𝑥  ∈  𝐴 𝜑 )  →  ∃ 𝑥  ∈  𝐴 𝜑 )  | 
						
						
							| 2 | 
							
								1
							 | 
							ex | 
							⊢ ( 𝐴  ≠  ∅  →  ( ∀ 𝑥  ∈  𝐴 𝜑  →  ∃ 𝑥  ∈  𝐴 𝜑 ) )  | 
						
						
							| 3 | 
							
								
							 | 
							noel | 
							⊢ ¬  𝑥  ∈  ∅  | 
						
						
							| 4 | 
							
								3
							 | 
							pm2.21i | 
							⊢ ( 𝑥  ∈  ∅  →  𝜑 )  | 
						
						
							| 5 | 
							
								4
							 | 
							rgen | 
							⊢ ∀ 𝑥  ∈  ∅ 𝜑  | 
						
						
							| 6 | 
							
								
							 | 
							raleq | 
							⊢ ( 𝐴  =  ∅  →  ( ∀ 𝑥  ∈  𝐴 𝜑  ↔  ∀ 𝑥  ∈  ∅ 𝜑 ) )  | 
						
						
							| 7 | 
							
								5 6
							 | 
							mpbiri | 
							⊢ ( 𝐴  =  ∅  →  ∀ 𝑥  ∈  𝐴 𝜑 )  | 
						
						
							| 8 | 
							
								7
							 | 
							necon3bi | 
							⊢ ( ¬  ∀ 𝑥  ∈  𝐴 𝜑  →  𝐴  ≠  ∅ )  | 
						
						
							| 9 | 
							
								
							 | 
							exsimpl | 
							⊢ ( ∃ 𝑥 ( 𝑥  ∈  𝐴  ∧  𝜑 )  →  ∃ 𝑥 𝑥  ∈  𝐴 )  | 
						
						
							| 10 | 
							
								
							 | 
							df-rex | 
							⊢ ( ∃ 𝑥  ∈  𝐴 𝜑  ↔  ∃ 𝑥 ( 𝑥  ∈  𝐴  ∧  𝜑 ) )  | 
						
						
							| 11 | 
							
								
							 | 
							n0 | 
							⊢ ( 𝐴  ≠  ∅  ↔  ∃ 𝑥 𝑥  ∈  𝐴 )  | 
						
						
							| 12 | 
							
								9 10 11
							 | 
							3imtr4i | 
							⊢ ( ∃ 𝑥  ∈  𝐴 𝜑  →  𝐴  ≠  ∅ )  | 
						
						
							| 13 | 
							
								8 12
							 | 
							ja | 
							⊢ ( ( ∀ 𝑥  ∈  𝐴 𝜑  →  ∃ 𝑥  ∈  𝐴 𝜑 )  →  𝐴  ≠  ∅ )  | 
						
						
							| 14 | 
							
								2 13
							 | 
							impbii | 
							⊢ ( 𝐴  ≠  ∅  ↔  ( ∀ 𝑥  ∈  𝐴 𝜑  →  ∃ 𝑥  ∈  𝐴 𝜑 ) )  |