| Step |
Hyp |
Ref |
Expression |
| 1 |
|
r19.2z |
⊢ ( ( 𝐴 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐴 𝜑 ) → ∃ 𝑥 ∈ 𝐴 𝜑 ) |
| 2 |
1
|
ex |
⊢ ( 𝐴 ≠ ∅ → ( ∀ 𝑥 ∈ 𝐴 𝜑 → ∃ 𝑥 ∈ 𝐴 𝜑 ) ) |
| 3 |
|
noel |
⊢ ¬ 𝑥 ∈ ∅ |
| 4 |
3
|
pm2.21i |
⊢ ( 𝑥 ∈ ∅ → 𝜑 ) |
| 5 |
4
|
rgen |
⊢ ∀ 𝑥 ∈ ∅ 𝜑 |
| 6 |
|
raleq |
⊢ ( 𝐴 = ∅ → ( ∀ 𝑥 ∈ 𝐴 𝜑 ↔ ∀ 𝑥 ∈ ∅ 𝜑 ) ) |
| 7 |
5 6
|
mpbiri |
⊢ ( 𝐴 = ∅ → ∀ 𝑥 ∈ 𝐴 𝜑 ) |
| 8 |
7
|
necon3bi |
⊢ ( ¬ ∀ 𝑥 ∈ 𝐴 𝜑 → 𝐴 ≠ ∅ ) |
| 9 |
|
exsimpl |
⊢ ( ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) → ∃ 𝑥 𝑥 ∈ 𝐴 ) |
| 10 |
|
df-rex |
⊢ ( ∃ 𝑥 ∈ 𝐴 𝜑 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) |
| 11 |
|
n0 |
⊢ ( 𝐴 ≠ ∅ ↔ ∃ 𝑥 𝑥 ∈ 𝐴 ) |
| 12 |
9 10 11
|
3imtr4i |
⊢ ( ∃ 𝑥 ∈ 𝐴 𝜑 → 𝐴 ≠ ∅ ) |
| 13 |
8 12
|
ja |
⊢ ( ( ∀ 𝑥 ∈ 𝐴 𝜑 → ∃ 𝑥 ∈ 𝐴 𝜑 ) → 𝐴 ≠ ∅ ) |
| 14 |
2 13
|
impbii |
⊢ ( 𝐴 ≠ ∅ ↔ ( ∀ 𝑥 ∈ 𝐴 𝜑 → ∃ 𝑥 ∈ 𝐴 𝜑 ) ) |