Metamath Proof Explorer


Theorem r19.2zb

Description: A response to the notion that the condition A =/= (/) can be removed in r19.2z . Interestingly enough, ph does not figure in the left-hand side. (Contributed by Jeff Hankins, 24-Aug-2009)

Ref Expression
Assertion r19.2zb ( 𝐴 ≠ ∅ ↔ ( ∀ 𝑥𝐴 𝜑 → ∃ 𝑥𝐴 𝜑 ) )

Proof

Step Hyp Ref Expression
1 r19.2z ( ( 𝐴 ≠ ∅ ∧ ∀ 𝑥𝐴 𝜑 ) → ∃ 𝑥𝐴 𝜑 )
2 1 ex ( 𝐴 ≠ ∅ → ( ∀ 𝑥𝐴 𝜑 → ∃ 𝑥𝐴 𝜑 ) )
3 noel ¬ 𝑥 ∈ ∅
4 3 pm2.21i ( 𝑥 ∈ ∅ → 𝜑 )
5 4 rgen 𝑥 ∈ ∅ 𝜑
6 raleq ( 𝐴 = ∅ → ( ∀ 𝑥𝐴 𝜑 ↔ ∀ 𝑥 ∈ ∅ 𝜑 ) )
7 5 6 mpbiri ( 𝐴 = ∅ → ∀ 𝑥𝐴 𝜑 )
8 7 necon3bi ( ¬ ∀ 𝑥𝐴 𝜑𝐴 ≠ ∅ )
9 exsimpl ( ∃ 𝑥 ( 𝑥𝐴𝜑 ) → ∃ 𝑥 𝑥𝐴 )
10 df-rex ( ∃ 𝑥𝐴 𝜑 ↔ ∃ 𝑥 ( 𝑥𝐴𝜑 ) )
11 n0 ( 𝐴 ≠ ∅ ↔ ∃ 𝑥 𝑥𝐴 )
12 9 10 11 3imtr4i ( ∃ 𝑥𝐴 𝜑𝐴 ≠ ∅ )
13 8 12 ja ( ( ∀ 𝑥𝐴 𝜑 → ∃ 𝑥𝐴 𝜑 ) → 𝐴 ≠ ∅ )
14 2 13 impbii ( 𝐴 ≠ ∅ ↔ ( ∀ 𝑥𝐴 𝜑 → ∃ 𝑥𝐴 𝜑 ) )