Metamath Proof Explorer


Theorem r19.30

Description: Restricted quantifier version of 19.30 . (Contributed by Scott Fenton, 25-Feb-2011) (Proof shortened by Wolf Lammen, 5-Nov-2024)

Ref Expression
Assertion r19.30 ( ∀ 𝑥𝐴 ( 𝜑𝜓 ) → ( ∀ 𝑥𝐴 𝜑 ∨ ∃ 𝑥𝐴 𝜓 ) )

Proof

Step Hyp Ref Expression
1 pm2.53 ( ( 𝜑𝜓 ) → ( ¬ 𝜑𝜓 ) )
2 1 ralimi ( ∀ 𝑥𝐴 ( 𝜑𝜓 ) → ∀ 𝑥𝐴 ( ¬ 𝜑𝜓 ) )
3 rexnal ( ∃ 𝑥𝐴 ¬ 𝜑 ↔ ¬ ∀ 𝑥𝐴 𝜑 )
4 3 biimpri ( ¬ ∀ 𝑥𝐴 𝜑 → ∃ 𝑥𝐴 ¬ 𝜑 )
5 rexim ( ∀ 𝑥𝐴 ( ¬ 𝜑𝜓 ) → ( ∃ 𝑥𝐴 ¬ 𝜑 → ∃ 𝑥𝐴 𝜓 ) )
6 2 4 5 syl2im ( ∀ 𝑥𝐴 ( 𝜑𝜓 ) → ( ¬ ∀ 𝑥𝐴 𝜑 → ∃ 𝑥𝐴 𝜓 ) )
7 6 orrd ( ∀ 𝑥𝐴 ( 𝜑𝜓 ) → ( ∀ 𝑥𝐴 𝜑 ∨ ∃ 𝑥𝐴 𝜓 ) )