Description: Restricted quantifier version of 19.30 . (Contributed by Scott Fenton, 25-Feb-2011) (Proof shortened by Wolf Lammen, 5-Nov-2024)
Ref | Expression | ||
---|---|---|---|
Assertion | r19.30 | ⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝜑 ∨ 𝜓 ) → ( ∀ 𝑥 ∈ 𝐴 𝜑 ∨ ∃ 𝑥 ∈ 𝐴 𝜓 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm2.53 | ⊢ ( ( 𝜑 ∨ 𝜓 ) → ( ¬ 𝜑 → 𝜓 ) ) | |
2 | 1 | ralimi | ⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝜑 ∨ 𝜓 ) → ∀ 𝑥 ∈ 𝐴 ( ¬ 𝜑 → 𝜓 ) ) |
3 | rexnal | ⊢ ( ∃ 𝑥 ∈ 𝐴 ¬ 𝜑 ↔ ¬ ∀ 𝑥 ∈ 𝐴 𝜑 ) | |
4 | 3 | biimpri | ⊢ ( ¬ ∀ 𝑥 ∈ 𝐴 𝜑 → ∃ 𝑥 ∈ 𝐴 ¬ 𝜑 ) |
5 | rexim | ⊢ ( ∀ 𝑥 ∈ 𝐴 ( ¬ 𝜑 → 𝜓 ) → ( ∃ 𝑥 ∈ 𝐴 ¬ 𝜑 → ∃ 𝑥 ∈ 𝐴 𝜓 ) ) | |
6 | 2 4 5 | syl2im | ⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝜑 ∨ 𝜓 ) → ( ¬ ∀ 𝑥 ∈ 𝐴 𝜑 → ∃ 𝑥 ∈ 𝐴 𝜓 ) ) |
7 | 6 | orrd | ⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝜑 ∨ 𝜓 ) → ( ∀ 𝑥 ∈ 𝐴 𝜑 ∨ ∃ 𝑥 ∈ 𝐴 𝜓 ) ) |