Step |
Hyp |
Ref |
Expression |
1 |
|
pm2.53 |
⊢ ( ( 𝜓 ∨ 𝜑 ) → ( ¬ 𝜓 → 𝜑 ) ) |
2 |
1
|
orcoms |
⊢ ( ( 𝜑 ∨ 𝜓 ) → ( ¬ 𝜓 → 𝜑 ) ) |
3 |
2
|
ralimi |
⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝜑 ∨ 𝜓 ) → ∀ 𝑥 ∈ 𝐴 ( ¬ 𝜓 → 𝜑 ) ) |
4 |
|
ralim |
⊢ ( ∀ 𝑥 ∈ 𝐴 ( ¬ 𝜓 → 𝜑 ) → ( ∀ 𝑥 ∈ 𝐴 ¬ 𝜓 → ∀ 𝑥 ∈ 𝐴 𝜑 ) ) |
5 |
|
ralnex |
⊢ ( ∀ 𝑥 ∈ 𝐴 ¬ 𝜓 ↔ ¬ ∃ 𝑥 ∈ 𝐴 𝜓 ) |
6 |
5
|
biimpri |
⊢ ( ¬ ∃ 𝑥 ∈ 𝐴 𝜓 → ∀ 𝑥 ∈ 𝐴 ¬ 𝜓 ) |
7 |
6
|
imim1i |
⊢ ( ( ∀ 𝑥 ∈ 𝐴 ¬ 𝜓 → ∀ 𝑥 ∈ 𝐴 𝜑 ) → ( ¬ ∃ 𝑥 ∈ 𝐴 𝜓 → ∀ 𝑥 ∈ 𝐴 𝜑 ) ) |
8 |
7
|
orrd |
⊢ ( ( ∀ 𝑥 ∈ 𝐴 ¬ 𝜓 → ∀ 𝑥 ∈ 𝐴 𝜑 ) → ( ∃ 𝑥 ∈ 𝐴 𝜓 ∨ ∀ 𝑥 ∈ 𝐴 𝜑 ) ) |
9 |
8
|
orcomd |
⊢ ( ( ∀ 𝑥 ∈ 𝐴 ¬ 𝜓 → ∀ 𝑥 ∈ 𝐴 𝜑 ) → ( ∀ 𝑥 ∈ 𝐴 𝜑 ∨ ∃ 𝑥 ∈ 𝐴 𝜓 ) ) |
10 |
3 4 9
|
3syl |
⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝜑 ∨ 𝜓 ) → ( ∀ 𝑥 ∈ 𝐴 𝜑 ∨ ∃ 𝑥 ∈ 𝐴 𝜓 ) ) |