Metamath Proof Explorer


Theorem r19.30OLD

Description: Obsolete version of 19.30 as of 5-Nov-2024. (Contributed by Scott Fenton, 25-Feb-2011) (Proof shortened by Wolf Lammen, 18-Jun-2023) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion r19.30OLD ( ∀ 𝑥𝐴 ( 𝜑𝜓 ) → ( ∀ 𝑥𝐴 𝜑 ∨ ∃ 𝑥𝐴 𝜓 ) )

Proof

Step Hyp Ref Expression
1 pm2.53 ( ( 𝜓𝜑 ) → ( ¬ 𝜓𝜑 ) )
2 1 orcoms ( ( 𝜑𝜓 ) → ( ¬ 𝜓𝜑 ) )
3 2 ralimi ( ∀ 𝑥𝐴 ( 𝜑𝜓 ) → ∀ 𝑥𝐴 ( ¬ 𝜓𝜑 ) )
4 ralim ( ∀ 𝑥𝐴 ( ¬ 𝜓𝜑 ) → ( ∀ 𝑥𝐴 ¬ 𝜓 → ∀ 𝑥𝐴 𝜑 ) )
5 ralnex ( ∀ 𝑥𝐴 ¬ 𝜓 ↔ ¬ ∃ 𝑥𝐴 𝜓 )
6 5 biimpri ( ¬ ∃ 𝑥𝐴 𝜓 → ∀ 𝑥𝐴 ¬ 𝜓 )
7 6 imim1i ( ( ∀ 𝑥𝐴 ¬ 𝜓 → ∀ 𝑥𝐴 𝜑 ) → ( ¬ ∃ 𝑥𝐴 𝜓 → ∀ 𝑥𝐴 𝜑 ) )
8 7 orrd ( ( ∀ 𝑥𝐴 ¬ 𝜓 → ∀ 𝑥𝐴 𝜑 ) → ( ∃ 𝑥𝐴 𝜓 ∨ ∀ 𝑥𝐴 𝜑 ) )
9 8 orcomd ( ( ∀ 𝑥𝐴 ¬ 𝜓 → ∀ 𝑥𝐴 𝜑 ) → ( ∀ 𝑥𝐴 𝜑 ∨ ∃ 𝑥𝐴 𝜓 ) )
10 3 4 9 3syl ( ∀ 𝑥𝐴 ( 𝜑𝜓 ) → ( ∀ 𝑥𝐴 𝜑 ∨ ∃ 𝑥𝐴 𝜓 ) )