Description: Restricted quantifier version of 19.32v . (Contributed by NM, 25-Nov-2003)
Ref | Expression | ||
---|---|---|---|
Assertion | r19.32v | ⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝜑 ∨ 𝜓 ) ↔ ( 𝜑 ∨ ∀ 𝑥 ∈ 𝐴 𝜓 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | r19.21v | ⊢ ( ∀ 𝑥 ∈ 𝐴 ( ¬ 𝜑 → 𝜓 ) ↔ ( ¬ 𝜑 → ∀ 𝑥 ∈ 𝐴 𝜓 ) ) | |
2 | df-or | ⊢ ( ( 𝜑 ∨ 𝜓 ) ↔ ( ¬ 𝜑 → 𝜓 ) ) | |
3 | 2 | ralbii | ⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝜑 ∨ 𝜓 ) ↔ ∀ 𝑥 ∈ 𝐴 ( ¬ 𝜑 → 𝜓 ) ) |
4 | df-or | ⊢ ( ( 𝜑 ∨ ∀ 𝑥 ∈ 𝐴 𝜓 ) ↔ ( ¬ 𝜑 → ∀ 𝑥 ∈ 𝐴 𝜓 ) ) | |
5 | 1 3 4 | 3bitr4i | ⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝜑 ∨ 𝜓 ) ↔ ( 𝜑 ∨ ∀ 𝑥 ∈ 𝐴 𝜓 ) ) |