Metamath Proof Explorer


Theorem r19.32v

Description: Restricted quantifier version of 19.32v . (Contributed by NM, 25-Nov-2003)

Ref Expression
Assertion r19.32v ( ∀ 𝑥𝐴 ( 𝜑𝜓 ) ↔ ( 𝜑 ∨ ∀ 𝑥𝐴 𝜓 ) )

Proof

Step Hyp Ref Expression
1 r19.21v ( ∀ 𝑥𝐴 ( ¬ 𝜑𝜓 ) ↔ ( ¬ 𝜑 → ∀ 𝑥𝐴 𝜓 ) )
2 df-or ( ( 𝜑𝜓 ) ↔ ( ¬ 𝜑𝜓 ) )
3 2 ralbii ( ∀ 𝑥𝐴 ( 𝜑𝜓 ) ↔ ∀ 𝑥𝐴 ( ¬ 𝜑𝜓 ) )
4 df-or ( ( 𝜑 ∨ ∀ 𝑥𝐴 𝜓 ) ↔ ( ¬ 𝜑 → ∀ 𝑥𝐴 𝜓 ) )
5 1 3 4 3bitr4i ( ∀ 𝑥𝐴 ( 𝜑𝜓 ) ↔ ( 𝜑 ∨ ∀ 𝑥𝐴 𝜓 ) )