Metamath Proof Explorer


Theorem r19.35

Description: Restricted quantifier version of 19.35 . (Contributed by NM, 20-Sep-2003)

Ref Expression
Assertion r19.35 ( ∃ 𝑥𝐴 ( 𝜑𝜓 ) ↔ ( ∀ 𝑥𝐴 𝜑 → ∃ 𝑥𝐴 𝜓 ) )

Proof

Step Hyp Ref Expression
1 pm2.27 ( 𝜑 → ( ( 𝜑𝜓 ) → 𝜓 ) )
2 1 ralimi ( ∀ 𝑥𝐴 𝜑 → ∀ 𝑥𝐴 ( ( 𝜑𝜓 ) → 𝜓 ) )
3 rexim ( ∀ 𝑥𝐴 ( ( 𝜑𝜓 ) → 𝜓 ) → ( ∃ 𝑥𝐴 ( 𝜑𝜓 ) → ∃ 𝑥𝐴 𝜓 ) )
4 2 3 syl ( ∀ 𝑥𝐴 𝜑 → ( ∃ 𝑥𝐴 ( 𝜑𝜓 ) → ∃ 𝑥𝐴 𝜓 ) )
5 4 com12 ( ∃ 𝑥𝐴 ( 𝜑𝜓 ) → ( ∀ 𝑥𝐴 𝜑 → ∃ 𝑥𝐴 𝜓 ) )
6 rexnal ( ∃ 𝑥𝐴 ¬ 𝜑 ↔ ¬ ∀ 𝑥𝐴 𝜑 )
7 pm2.21 ( ¬ 𝜑 → ( 𝜑𝜓 ) )
8 7 reximi ( ∃ 𝑥𝐴 ¬ 𝜑 → ∃ 𝑥𝐴 ( 𝜑𝜓 ) )
9 6 8 sylbir ( ¬ ∀ 𝑥𝐴 𝜑 → ∃ 𝑥𝐴 ( 𝜑𝜓 ) )
10 ax-1 ( 𝜓 → ( 𝜑𝜓 ) )
11 10 reximi ( ∃ 𝑥𝐴 𝜓 → ∃ 𝑥𝐴 ( 𝜑𝜓 ) )
12 9 11 ja ( ( ∀ 𝑥𝐴 𝜑 → ∃ 𝑥𝐴 𝜓 ) → ∃ 𝑥𝐴 ( 𝜑𝜓 ) )
13 5 12 impbii ( ∃ 𝑥𝐴 ( 𝜑𝜓 ) ↔ ( ∀ 𝑥𝐴 𝜑 → ∃ 𝑥𝐴 𝜓 ) )