Metamath Proof Explorer


Theorem r19.36vf

Description: Restricted quantifier version of one direction of 19.36 . (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypothesis r19.36vf.1 𝑥 𝜓
Assertion r19.36vf ( ∃ 𝑥𝐴 ( 𝜑𝜓 ) → ( ∀ 𝑥𝐴 𝜑𝜓 ) )

Proof

Step Hyp Ref Expression
1 r19.36vf.1 𝑥 𝜓
2 r19.35 ( ∃ 𝑥𝐴 ( 𝜑𝜓 ) ↔ ( ∀ 𝑥𝐴 𝜑 → ∃ 𝑥𝐴 𝜓 ) )
3 idd ( 𝑥𝐴 → ( 𝜓𝜓 ) )
4 1 3 rexlimi ( ∃ 𝑥𝐴 𝜓𝜓 )
5 4 imim2i ( ( ∀ 𝑥𝐴 𝜑 → ∃ 𝑥𝐴 𝜓 ) → ( ∀ 𝑥𝐴 𝜑𝜓 ) )
6 2 5 sylbi ( ∃ 𝑥𝐴 ( 𝜑𝜓 ) → ( ∀ 𝑥𝐴 𝜑𝜓 ) )