Description: Restricted quantifier version of one direction of 19.36 . (Contributed by Glauco Siliprandi, 23-Oct-2021)
Ref | Expression | ||
---|---|---|---|
Hypothesis | r19.36vf.1 | ⊢ Ⅎ 𝑥 𝜓 | |
Assertion | r19.36vf | ⊢ ( ∃ 𝑥 ∈ 𝐴 ( 𝜑 → 𝜓 ) → ( ∀ 𝑥 ∈ 𝐴 𝜑 → 𝜓 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | r19.36vf.1 | ⊢ Ⅎ 𝑥 𝜓 | |
2 | r19.35 | ⊢ ( ∃ 𝑥 ∈ 𝐴 ( 𝜑 → 𝜓 ) ↔ ( ∀ 𝑥 ∈ 𝐴 𝜑 → ∃ 𝑥 ∈ 𝐴 𝜓 ) ) | |
3 | idd | ⊢ ( 𝑥 ∈ 𝐴 → ( 𝜓 → 𝜓 ) ) | |
4 | 1 3 | rexlimi | ⊢ ( ∃ 𝑥 ∈ 𝐴 𝜓 → 𝜓 ) |
5 | 4 | imim2i | ⊢ ( ( ∀ 𝑥 ∈ 𝐴 𝜑 → ∃ 𝑥 ∈ 𝐴 𝜓 ) → ( ∀ 𝑥 ∈ 𝐴 𝜑 → 𝜓 ) ) |
6 | 2 5 | sylbi | ⊢ ( ∃ 𝑥 ∈ 𝐴 ( 𝜑 → 𝜓 ) → ( ∀ 𝑥 ∈ 𝐴 𝜑 → 𝜓 ) ) |