Metamath Proof Explorer


Theorem r19.36zv

Description: Restricted quantifier version of Theorem 19.36 of Margaris p. 90. It is valid only when the domain of quantification is not empty. (Contributed by NM, 20-Sep-2003)

Ref Expression
Assertion r19.36zv ( 𝐴 ≠ ∅ → ( ∃ 𝑥𝐴 ( 𝜑𝜓 ) ↔ ( ∀ 𝑥𝐴 𝜑𝜓 ) ) )

Proof

Step Hyp Ref Expression
1 r19.35 ( ∃ 𝑥𝐴 ( 𝜑𝜓 ) ↔ ( ∀ 𝑥𝐴 𝜑 → ∃ 𝑥𝐴 𝜓 ) )
2 r19.9rzv ( 𝐴 ≠ ∅ → ( 𝜓 ↔ ∃ 𝑥𝐴 𝜓 ) )
3 2 imbi2d ( 𝐴 ≠ ∅ → ( ( ∀ 𝑥𝐴 𝜑𝜓 ) ↔ ( ∀ 𝑥𝐴 𝜑 → ∃ 𝑥𝐴 𝜓 ) ) )
4 1 3 bitr4id ( 𝐴 ≠ ∅ → ( ∃ 𝑥𝐴 ( 𝜑𝜓 ) ↔ ( ∀ 𝑥𝐴 𝜑𝜓 ) ) )