Metamath Proof Explorer


Theorem r19.37

Description: Restricted quantifier version of one direction of 19.37 . (The other direction does not hold when A is empty.) (Contributed by FL, 13-May-2012) (Revised by Mario Carneiro, 11-Dec-2016)

Ref Expression
Hypothesis r19.37.1 𝑥 𝜑
Assertion r19.37 ( ∃ 𝑥𝐴 ( 𝜑𝜓 ) → ( 𝜑 → ∃ 𝑥𝐴 𝜓 ) )

Proof

Step Hyp Ref Expression
1 r19.37.1 𝑥 𝜑
2 r19.35 ( ∃ 𝑥𝐴 ( 𝜑𝜓 ) ↔ ( ∀ 𝑥𝐴 𝜑 → ∃ 𝑥𝐴 𝜓 ) )
3 ax-1 ( 𝜑 → ( 𝑥𝐴𝜑 ) )
4 1 3 ralrimi ( 𝜑 → ∀ 𝑥𝐴 𝜑 )
5 4 imim1i ( ( ∀ 𝑥𝐴 𝜑 → ∃ 𝑥𝐴 𝜓 ) → ( 𝜑 → ∃ 𝑥𝐴 𝜓 ) )
6 2 5 sylbi ( ∃ 𝑥𝐴 ( 𝜑𝜓 ) → ( 𝜑 → ∃ 𝑥𝐴 𝜓 ) )