Metamath Proof Explorer


Theorem r19.37v

Description: Restricted quantifier version of one direction of 19.37v . (The other direction holds iff A is nonempty, see r19.37zv .) (Contributed by NM, 2-Apr-2004) Reduce axiom usage. (Revised by Wolf Lammen, 18-Jun-2023)

Ref Expression
Assertion r19.37v ( ∃ 𝑥𝐴 ( 𝜑𝜓 ) → ( 𝜑 → ∃ 𝑥𝐴 𝜓 ) )

Proof

Step Hyp Ref Expression
1 id ( 𝜑𝜑 )
2 1 ralrimivw ( 𝜑 → ∀ 𝑥𝐴 𝜑 )
3 r19.35 ( ∃ 𝑥𝐴 ( 𝜑𝜓 ) ↔ ( ∀ 𝑥𝐴 𝜑 → ∃ 𝑥𝐴 𝜓 ) )
4 3 biimpi ( ∃ 𝑥𝐴 ( 𝜑𝜓 ) → ( ∀ 𝑥𝐴 𝜑 → ∃ 𝑥𝐴 𝜓 ) )
5 2 4 syl5 ( ∃ 𝑥𝐴 ( 𝜑𝜓 ) → ( 𝜑 → ∃ 𝑥𝐴 𝜓 ) )