Description: Restricted quantification of wff not containing quantified variable. (Contributed by FL, 3-Jan-2008)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | r19.3rz.1 | ⊢ Ⅎ 𝑥 𝜑 | |
| Assertion | r19.3rz | ⊢ ( 𝐴 ≠ ∅ → ( 𝜑 ↔ ∀ 𝑥 ∈ 𝐴 𝜑 ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | r19.3rz.1 | ⊢ Ⅎ 𝑥 𝜑 | |
| 2 | n0 | ⊢ ( 𝐴 ≠ ∅ ↔ ∃ 𝑥 𝑥 ∈ 𝐴 ) | |
| 3 | biimt | ⊢ ( ∃ 𝑥 𝑥 ∈ 𝐴 → ( 𝜑 ↔ ( ∃ 𝑥 𝑥 ∈ 𝐴 → 𝜑 ) ) ) | |
| 4 | 2 3 | sylbi | ⊢ ( 𝐴 ≠ ∅ → ( 𝜑 ↔ ( ∃ 𝑥 𝑥 ∈ 𝐴 → 𝜑 ) ) ) | 
| 5 | df-ral | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝜑 ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝜑 ) ) | |
| 6 | 1 | 19.23 | ⊢ ( ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝜑 ) ↔ ( ∃ 𝑥 𝑥 ∈ 𝐴 → 𝜑 ) ) | 
| 7 | 5 6 | bitri | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝜑 ↔ ( ∃ 𝑥 𝑥 ∈ 𝐴 → 𝜑 ) ) | 
| 8 | 4 7 | bitr4di | ⊢ ( 𝐴 ≠ ∅ → ( 𝜑 ↔ ∀ 𝑥 ∈ 𝐴 𝜑 ) ) |