Description: Restricted quantification of wff not containing quantified variable. (Contributed by Glauco Siliprandi, 24-Jan-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | r19.3rzf.1 | ⊢ Ⅎ 𝑥 𝜑 | |
r19.3rzf.2 | ⊢ Ⅎ 𝑥 𝐴 | ||
Assertion | r19.3rzf | ⊢ ( 𝐴 ≠ ∅ → ( 𝜑 ↔ ∀ 𝑥 ∈ 𝐴 𝜑 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | r19.3rzf.1 | ⊢ Ⅎ 𝑥 𝜑 | |
2 | r19.3rzf.2 | ⊢ Ⅎ 𝑥 𝐴 | |
3 | 2 | n0f | ⊢ ( 𝐴 ≠ ∅ ↔ ∃ 𝑥 𝑥 ∈ 𝐴 ) |
4 | biimt | ⊢ ( ∃ 𝑥 𝑥 ∈ 𝐴 → ( 𝜑 ↔ ( ∃ 𝑥 𝑥 ∈ 𝐴 → 𝜑 ) ) ) | |
5 | 3 4 | sylbi | ⊢ ( 𝐴 ≠ ∅ → ( 𝜑 ↔ ( ∃ 𝑥 𝑥 ∈ 𝐴 → 𝜑 ) ) ) |
6 | df-ral | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝜑 ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝜑 ) ) | |
7 | 1 | 19.23 | ⊢ ( ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝜑 ) ↔ ( ∃ 𝑥 𝑥 ∈ 𝐴 → 𝜑 ) ) |
8 | 6 7 | bitri | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝜑 ↔ ( ∃ 𝑥 𝑥 ∈ 𝐴 → 𝜑 ) ) |
9 | 5 8 | bitr4di | ⊢ ( 𝐴 ≠ ∅ → ( 𝜑 ↔ ∀ 𝑥 ∈ 𝐴 𝜑 ) ) |